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Butomus umbellatus (Flowering-rush) 
Predicted Suitable Habitat Modeling 

 
Distribution Status: Present 

State Rank: SNA (Noxious Weed) 

Global Rank: G5 

 

Modeling Overview 

Created by: Braden Burkholder 

Creation Date: February 23, 2021 

Evaluator: Bryce Maxell 

Evaluation Date: April 29, 2021 

 
 

 
Inductive Model Goal: To predict the current distribution and relative suitability of general habitat for Butomus 

umbellatus at large spatial scales across its presumed current range in Montana. 

Inductive Model Performance: The model appears to adequately reflect the current distribution and relative 

suitability of general habitat for Butomus umbellatus at larger spatial scales across its presumed current range in 

Montana. Evaluation metrics indicate a moderate model fit with acceptable average deviance and AVI values and the 

delineation of habitat suitability classes is reasonably well supported by the data despite low data volume. The model 

is presented as a reference, but more observation records, site-specific data, and/or other environmental layers may 

be needed to improve performance. 

Inductive Model Output: 

http://mtnhp.org/models/files/Butomus_umbellatus_PMBUT01010_20210223_modelHex.lpk 

 

Suggested Citation: Montana Natural Heritage Program. 2021. Butomus umbellatus (Flowering-rush) predicted 

suitable habitat model created on February 23, 2021. Montana Natural Heritage Program, Helena, MT. 17 pp. 

 

Montana Field Guide Species Account: http://fieldguide.mt.gov/speciesDetail.aspx?elcode=PMBUT01010  

 

Species Model Page: http://mtnhp.org/models/?elcode=PMBUT01010 

http://fieldguide.mt.gov/statusCodes.aspx#msrc:rank
http://fieldguide.mt.gov/statusCodes.aspx#msrc:rank
http://mtnhp.org/models/files/Butomus_umbellatus_PMBUT01010_20210223_modelHex.lpk
http://fieldguide.mt.gov/speciesDetail.aspx?elcode=PMBUT01010
http://mtnhp.org/models/?elcode=PMBUT01010


 
Butomus umbellatus (Flowering-rush) Predicted Suitable Habitat Modeling February 23, 2021 

page 2 of 17 
 

Inductive Modeling 

Model Limitations and Suggested Uses 

This model is based on statewide biotic and abiotic environmental layers originally mapped at a variety of spatial 

scales and standardized to 90×90-meter raster pixels. The spatial accuracy of the training and testing data are varied 

(typically 20-400 meters) and may result in additional statistical noise in the model. As a result, model outputs may 

not be appropriate for use on smaller areas or at fine spatial scales. Model outputs should not typically be used for 

planning efforts on land areas smaller than one quarter of a public land survey system (PLSS) section (<64 hectares) 

and model outputs for some species may only be appropriate for broader regional level planning efforts. Models 

should be interpreted as landscape-level habitat suitability (fundamental niche) and not as estimated distributions of 

the species (realized niche) since suitable habitat may be unoccupied (Pulliam 2000). Consequently, model outputs 

should not be used in place of on-the-ground surveys for species, and wildlife and land management agency 

biologists should be consulted about the value of using model output to guide habitat management decisions for 

regional planning efforts or local projects. See Suggested Contacts for Natural Resource Agencies listed at the end of 

this report or on our website. In general, we have found across a large number of species representing a wide variety 

of plant and animal taxa that experts believe optimal and moderate suitability classes represent landscapes where 

suitable habitat is often more continuous while the low suitability class represents landscapes where suitable habitat 

is often less continuous, scattered, or patchy (see definitions in the Model Outputs and Evaluation section below). We 

encourage use of these classes for management, planning, permitting, survey, and other decisions accordingly. 

 

Inductive Model Methods 
Modeling Process 

Presence-only data were extracted from Montana Natural Heritage Program Databases, which serve as a 

clearinghouse for animal and plant observation data in Montana. These data were then filtered to ensure spatial and 

temporal accuracy and to reduce spatial autocorrelation (summarized in Table 1). The spatial extent of this model was 

limited to the presumed geographic range of the species, by season when applicable, in order to accurately assess 

potentially available habitat.  

 

We then used these data and 44 statewide biotic and abiotic environmental layers at a 90×90-meter pixel scale (Table 

2) to construct the model using a maximum entropy algorithm employed in the modeling program Maxent (Phillips et 

al. 2006, Phillips et al. 2017). Entropy maximization modeling functions by calculating constraint distributions and 

then applies those constraints to the environmental layers to estimate a predicted suitable habitat distribution. The 

mean and variance of the environmental layer values (environmental variables) at the training data locations are used 

to estimate the constraint distributions. Maxent requires that the final predicted distribution fulfills these constraints. 

Maxent avoids overfitting ƳƻŘŜƭǎ ǘƻ ǘƘŜ ǘǊŀƛƴƛƴƎ Řŀǘŀ ōȅ άǊŜƎǳƭŀǊƛȊƛƴƎέ ƻǊ ǊŜƭŀȄƛƴƎ ǘƘŜ ŎƻƴǎǘǊŀƛƴǘǎ ǎƻ ǘƘŀǘ modeled 

distributions only have to be close to, rather than exactly equal to, the constraint distributions (Elith et al. 2011). The 

default regularization multiplier of 1.0 was used since species-specific tuning was impractical given the diversity and 

volume of species modeled in this effort (Merow et al. 2013, Radosavljevic and Anderson 2014). Additionally, we did 

not use hinge or threshold features at any sample size to minimize potential overfitting by overly complex models 

(Syfert et al. 2013, De Marco and N̍berga 2018). The Maxent algorithm can successfully train models even when 

collinearity exists between environmental variables and the practices of removing collinear variables and/or reducing 

variables results in limited improvement in Maxent model performance (De Marco and N̍berga 2018, Feng et al. 

2019); neither method was employed here. 

http://mtnhp.org/MapViewer/PDF_Reports/HEXContacts.pdf
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Maxent fits a model by assuming the predicted distribution is uniform in geographic space and moves away from this 

distribution only to the extent that it is forced to by the constraints of the training data. To do this, Maxent 

successively modifies the coefficients for each environmental variable via random walk, accepting the modified 

coefficient if it increases the gain. Gain is a measure of the closeness of the model concentration around the presence 

samples that is similar to goodness of fit in generalized linear models. The random walk of coefficients continues until 

either the increase in the gain falls below a set convergence threshold (0.00001) or a set maximum number of 

iterations are performed (50,000). The gain value at the end of a model run indicates the likelihood of suitability of 

the presence samples relative to the likelihood for random background points. 

 

We employed a k-folds cross validation methodology, in this case using ten folds for model training and validation 

(Elith et al. 2011). Each fold consists of 90% of the data designated for training and 10% of the data reserved for 

testing. Each record is used for training nine times and testing once. Ten models are estimated and averaged to 

produce the final model presented here. 

 

Model Outputs and Evaluation 

The overall gain associated with individual environmental variables (Table 3) can be used as a measure of the relative 

importance of each variable (Merow et al. 2013). However, the importance of individual environmental variables 

should be interpreted with caution due to collinearity between variables. The jackknife assessment of contribution by 

individual environmental variables to training gain (Figure 1) may be more useful in interpreting the relative 

importance of individual variables. The response curves for the top four contributing environmental variables are 

shown for reference (Figure 2). These response curves should also be interpreted cautiously because the observation 

data used to train the models was not gathered under a probabilistic sampling scheme. If enough observations were 

available to train and evaluate the model, thresholds are estimated for low, moderate, and optimal habitat suitability; 

details of this process are presented in Table 4 and Figure 3. 

 

The initial model output is a spatial dataset of continuous logistic values that ranges from 0-1 with lower values 

representing areas predicted to be less suitable habitat and higher values representing areas predicted to be more 

suitable habitat (Figures 4 & 5). The standard deviation in the model output across the averaged models is also 

calculated and plotted as a map to examine spatial variance of model output (Figure 6). The continuous output is 

reclassified into suitability classes and aggregated within 259-hectare hexagons (Figures 7-9).  

 

In addition to the map of spatial variance in model output, we also evaluated the output of the Maxent model with 

absolute validation index (AVI) (Hirzel et al. 2006) and deviance (Phillips and Dudik 2008). These metrics are described 

below in the results (Table 5). True skill statistic (TSS) (Allouche et al. 2006), symmetric extremal dependence index 

(SEDI) (Wunderlich et al. 2019), and Area Under the Curve (AUC) values are also displayed for reference but are not 

used for evaluation (Lobo et al. 2008). Finally, a deviance value was calculated for each test data observation as a 

measure of how well model output matched what the model predicted for the location of test observations and this 

was plotted with larger symbols indicating larger deviance (see Figure 5). In practice, we have found large deviance 

values to be associated with records that are incorrectly or imprecisely mapped, problematic areas in underlying 

environmental layers, regions where species have few observations outside of the core portion of their range, or 

insufficient models with poor performance.  
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Table 1: Model Data Selection Criteria and Summary 

Location Data Source Montana Natural Heritage Program Databases 

Total Number of Records 172 

Location Data Selection Rule 1 ς Valid and 
Accurate Records 

Records with <= 800 meters of locational uncertainty 

Number of Locations Meeting Selection Rule 1 79 

Location Data Selection Rule 2 ς Spatially Unique 
Records 

No overlap in locations within 1600 meters in order to avoid 
spatial autocorrelation 

Observation Records used in Model 
(Locations Meeting Selection Rules 1 & 2) 

19 

Number of Model Background Locationsa 60,000 
 

a Background locations are chosen at random and in proportion to the percent of the state covered by a speciesΩ geographic range, with a maximum of 60,000 
locations. Although these locations only represent ~0.1% of the pixels in any modeled area, this level of sampling is sufficient to estimated distributions of 
environmental conditions present (Phillips and Dudik 2008). 

 

Table 2: Environmental Layers and Corresponding Variablesa 

Layer Name Variable 
 

Layer Name Variable 

LC_AgDry_97 Developed - Dry Agriculture 
 

NED_AspectEW Aspect (East-West) 

LC_AgIrr_97 Developed - Irrigated Lands 
 

NED_AspectNS Aspect (North-South) 

LC_Alpine_97 Alpine 
 

NED_Elevation Elevation 

LC_Barren_97 Sparse and Barren 
 

NED_Ruggedness Ruggedness 

LC_Developed_97 Developed - All Other 
 

NED_Slope Slope 

LC_ForestBurn_97 Forest - Burned 
 

NED_SRISummer Summer Solar Radiation 

LC_ForestConif_97 Forest - Conifer 
 

NED_SRIWinter Winter Solar Radiation 

LC_ForestDecid_97 Forest - Deciduous 
 

NED_TPI Topographic Position Index 

LC_ForestHarv_97 Forest - Harvested 
 

NHD_Dist2WaterEdge Distance to Water Edge 

LC_ForestInsct_97 Forest - Insect Killed 
 

NHP_AnthroInfl Anthropogenic Influence 

LC_Grassland_97 Grasslands 
 

NRCS_FrostFreeDays Frost Free Days 

LC_IntroVeg_97 Introduced Vegetation 
 

NRCS_REAP Relative Effective Annual 
Precipitation 

LC_ShrubBurn_97 Shrublands - Burned  
 

PRISM_Precipitation Annual Precipitation 

LC_Shrubland_97 Shrublands 
 

PRISM_WinPrecip Percent Winter Precipitation 

LC_WetRip_97 Wetland & Riparian 
 

SoilGrid_BD Bulk Density 

LC_Dist2Forest Distance to Forest 
 

SoilGrid_Clay Percent Clay 

MCO_DegreeDays Degree Days 
 

SoilGrid_EC Electric Conductivity 

MCO_MaxSumTemp Maximum Summer Temp 
 

SoilGrid_OrgC Organic Carbon 

MCO_MinWinTemp Minimum Winter Temp 
 

SoilGrid_pH Soil pH 

MCO_NDVI Normalized Difference 
Vegetation Index 

 
SoilGrid_Sand Percent Sand 

MTGeol_Dist2Alluv Distance to Alluvium 
 

SoilGrid_Silt  Percent Silt 

MTGeol_Dist2C03 Distance to Carbonate Rock 
 

SoilGrid_TotN Total Nitrogen 
 

a Additional details and sources available in Appendix.  
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Inductive Model Results 
Table 3: Top Ten Contributing Environmental Variables to Model Fit  

Variable Percent Contributiona Variable Percent Contributiona 

Bulk Density 17.4% Percent Silt 8.7% 

Minimum Winter Temp 12.3% Forest - Conifer 4.2% 

Anthropogenic Influence 11.8% Elevation 4.1% 

Distance to Water Edge 11.7% % Winter Precipitation 3.2% 

Percent Clay 9.5% Aspect (North-South) 3.2% 
 

a Relative contributions of the variables to the model based on changes in fit (gain) during iterations of the training algorithm. 

 

Table 4: Habitat Suitability Thresholds and Areas of Suitable Habitat 

Measure Value 

Optimal Logistic Thresholda 0.097 

Moderate Logistic Thresholdb 0.040 

Low Logistic Thresholdc 0.000 

Area of predicted optimal habitat within modeled range 433.8 km2 

Area of predicted moderate suitability habitat within modeled range 217.1 km2 

Area of predicted low suitability habitat within modeled range 3,002.3 km2 

Total area of predicted suitable habitat within modeled range 3,653.1 km2 

Area of entire modeled range (percent of Montana) 380,529 km2 (100.0%) 
 

a The logistic threshold where the percentage of test observations above the threshold is 10 or more times higher than would be expected if the observations were 
randomly distributed across logistic value classes (Hirzel et al. 2006) (see Figure 3). When sample sizes are small, it may be undetermined. 

b This is the cutoff recommended for use in management decisions. The logistic threshold value where the percentage of test observations above the threshold is 
greater then what would be expected if the observations were randomly distributed across logistic value classes - in other words, when the modeled habitat is used 
more often than expected from its proportional availability on the landscape (Hirzel et al. 2006). When sample sizes are small, it may be undetermined. 

c The logistic threshold between unsuitable and low suitability as determined by Maxent which balances data omission error with minimizing predicted suitable area 
(Phillips et al. 2017). This is a conservative threshold that should encompass nearly all potentially suitable habitat for a species. In practice, habitat with low 
suitability may represent landscapes of marginal or discontinuous habitat where suitable habitat patches of various sizes are isolated by unsuitable habitat. 

 

Table 5: Evaluation Metrics 

Metric Value 

Low AVIa 100.0% 

Moderate AVIa 84.2% 

Optimal AVIa 63.2% 

Average Testing Deviance (ȄɎ ± sd)b 3.788 ± 4.162 

TSS (Sensitivity + Specificity - 1)c 0.8408 (0.8421 + 0.9987 -1) 

SEDIc 0.9600 

Training AUCd 1.000 

Test AUCe 0.999 
 

a Absolute Validation Index: The proportion of test locations that fall above the low, moderate, or optimal logistic threshold (see Table 4). 
b A measure of how well model output matched the location of test observations. In theory, everywhere a test location was located, the logistic value should have 

been 1.0. The deviance value for each test location is calculated as -2 times the natural log of the associated logistic output value. For example, the equivalent 
deviance values for the low, moderate and optimal logistic thresholds of this model would be 16.223, 6.463 and 4.676, respectively. Deviances for individual test 
locations are plotted in Figure 5. Average Testing Deviance less than the Moderate Deviance typically indicates good model performance.  

c Ranges from -1 to 1, with a random or null model performing at a value of 0 and values >0.65 indicating moderate performance (>0.8 generally good performance). 
The moderate threshold (0.040) is used to develop the confusion matrix for Sensitivity and Specificity metrics. Note that Specificity is calculated based on pseudo-
absences (not true absences) and may be biased when large areas are modeled as moderate or optimal suitable habitat.  

d The area under a curve obtained by plotting the true positive rate against 1 minus the false positive rate for model training observations (averaged over 10 folds). 
Values range from 0 to 1 with a random or null model performing at a value of 0.5. 

e The same metric described in d, but calculated for test observations. 
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Figure 1. Jackknife assessment of contribution by individual environmental variables to training gain. Variables 
are ordered by reduction in gain without that variable (green), from greatest to least impact. Only the 25 most 
influential variablesa are shown. 

 
 
a Interpretation of individual environmental variables should be approached cautiously and may be inappropriate due to covariance between variables. 
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Figure 2. Response curves for the top four contributing environmental variables, mean value in red, +/- one standard 
deviation in blue. Response curves for additional environmental variables are available upon request. 

Bulk Density Minimum Winter Temp

 
Anthropogenic Influence Distance to Water Edge

 
 

Figure 3. Thresholds for moderate and optimal suitability classes as determined by logarithmic fit.

 
 



 
Butomus umbellatus (Flowering-rush) Predicted Suitable Habitat Modeling February 23, 2021 

page 8 of 17 
 

Inductive Model Map Outputs 
Figure 4. Continuous habitat suitability model logistic output (90-meter pixels); white area is not modeled. 

 
 

Figure 5. Continuous habitat suitability model output with relative deviance for each observation. Low deviance  

points fall within optimal or moderate habitat; high deviance points are in generally unsuitable habitat. 
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Figure 6. Standard deviation in the model output across the averaged models. Lower deviance (a solid blue map)  

indicates a better fitting model with lower variability between model iterations. 

 
 

Figure 7. Model output for 90-meter pixels classified into habitat suitability classes. 
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Figure 8. Model output classified into habitat suitability classes and aggregated into hexagons at a scale of 

259 hectares per hexagon. This is the finest scale suggested for management decisions and survey planning. 

 
 

Figure 9. Model output classified into habitat suitability classes and aggregated into hexagons; observations 

used for modeling are displayed for reference. 

 
 


