Eleocharis rostellata (Beaked Spikerush)

Predicted Suitable Habitat Modeling

Distribution Status: Present
State Rank: **S3** (Species of Concern)
Global Rank: **G5**

Modeling Overview

Created by: Braden Burkholder
Creation Date: June 10, 2020
Evaluator: Scott Mincemoyer
Evaluation Date: June 22, 2020

Inductive Model Goal: To predict the distribution and relative suitability of general habitat for *Eleocharis rostellata* at large spatial scales across its presumed range in Montana.

Inductive Model Performance: The model appears to somewhat adequately reflect the distribution and relative suitability of general habitat for *Eleocharis rostellata* at larger spatial scales across its presumed range in Montana. Evaluation metrics indicate a moderate model fit with elevated average deviance and poor AVI values and the delineation of habitat suitability classes is well supported by the data. The model shows the potential for habitat, but in the absence of applicable, finer-scale environmental layers, it overpredicts suitable habitat for this species. The model is presented as a reference, but more observation records, site-specific data, and/or other environmental layers may be needed to improve performance.

Inductive Model Output:
http://mtnhp.org/models/files/Eleocharis_rostellata_PMCYP091P0_20200610_modelHex.lpk

Suggested Citation: Montana Natural Heritage Program. 2020. *Eleocharis rostellata* (Beaked Spikerush) predicted suitable habitat model created on June 10, 2020. Montana Natural Heritage Program, Helena, MT. 17 pp.

Species Model Page: http://mtnhp.org/models/?elcode=PMCYP091P0
Inductive Modeling

Model Limitations and Suggested Uses

This model is based on statewide biotic and abiotic environmental layers originally mapped at a variety of spatial scales and standardized to 90×90-meter raster pixels. The spatial accuracy of the training and testing data are varied (typically 20-400 meters) and may result in additional statistical noise in the model. As a result, model outputs may not be appropriate for use on smaller areas or at fine spatial scales. Model outputs should not typically be used for planning efforts on land areas smaller than one quarter of a public land survey system (PLSS) section (<64 hectares) and model outputs for some species may only be appropriate for broader regional level planning efforts. Models should be interpreted as landscape-level habitat suitability (fundamental niche) and not as estimated distributions of the species (realized niche) since suitable habitat may be unoccupied (Pulliam 2000). Consequently, model outputs should not be used in place of on-the-ground surveys for species, and wildlife and land management agency biologists should be consulted about the value of using model output to guide habitat management decisions for regional planning efforts or local projects. See Suggested Contacts for Natural Resource Agencies listed at the end of this report or on our website.

Inductive Model Methods

Modeling Process

Presence-only data were extracted from Montana Natural Heritage Program Databases, which serve as a clearinghouse for animal and plant observation data in Montana. These data were then filtered to ensure spatial and temporal accuracy and to reduce spatial autocorrelation (summarized in Table 1). The spatial extent of this model was limited to the presumed geographic range of the species, by season when applicable, in order to accurately assess potentially available habitat.

We then used these data and 44 statewide biotic and abiotic environmental layers at a 90×90-meter pixel scale (Table 2) to construct the model using a maximum entropy algorithm employed in the modeling program Maxent (Phillips et al. 2006, Phillips et al. 2017). Entropy maximization modeling functions by calculating constraint distributions and then applies those constraints to the environmental layers to estimate a predicted suitable habitat distribution. The mean and variance of the environmental layer values (environmental variables) at the training data locations are used to estimate the constraint distributions. Maxent requires that the final predicted distribution fulfills these constraints. Maxent avoids overfitting models to the training data by “regularizing” or relaxing the constraints so that modeled distributions only have to be close to, rather than exactly equal to, the constraint distributions (Elith et al. 2011). The default regularization multiplier of 1.0 was used since species-specific tuning was impractical given the diversity and volume of species modeled in this effort (Merow et al. 2013, Radosavljevic and Anderson 2014). Additionally, we did not use hinge or threshold features at any sample size to minimize potential overfitting by overly complex models (Syfert et al. 2013, De Marco and Nóbrega 2018). The Maxent algorithm can successfully train models even when collinearity exists between environmental variables and the practices of removing collinear variables and/or reducing variables results in limited improvement in Maxent model performance (De Marco and Nóbrega 2018, Feng et al. 2019); neither method was employed here.
Maxent fits a model by assuming the predicted distribution is uniform in geographic space and moves away from this distribution only to the extent that it is forced to by the constraints of the training data. To do this, Maxent successively modifies the coefficients for each environmental variable via random walk, accepting the modified coefficient if it increases the gain. Gain is a measure of the closeness of the model concentration around the presence samples that is similar to goodness of fit in generalized linear models. The random walk of coefficients continues until either the increase in the gain falls below a set convergence threshold (0.00001) or a set maximum number of iterations are performed (50,000). The gain value at the end of a model run indicates the likelihood of suitability of the presence samples relative to the likelihood for random background points.

We employed a k-folds cross validation methodology, in this case using ten folds for model training and validation (Elith et al. 2011). Each fold consists of 90% of the data designated for training and 10% of the data reserved for testing. Each record is used for training nine times and testing once. Ten models are estimated and averaged to produce the final model presented here.

Model Outputs and Evaluation

The overall gain associated with individual environmental variables (Table 3) can be used as a measure of the relative importance of each variable (Merow et al. 2013). However, the importance of individual environmental variables should be interpreted with caution due to collinearity between variables. The jackknife assessment of contribution by individual environmental variables to training gain (Figure 1) may be more useful in interpreting the relative importance of individual variables. The response curves for the top four contributing environmental variables are shown for reference (Figure 2). These response curves should also be interpreted cautiously because the observation data used to train the models was not gathered under a probabilistic sampling scheme. If enough observations were available to train and evaluate the model, thresholds are estimated for low, moderate, and optimal habitat suitability; details of this process are presented in Table 4 and Figure 3.

The initial model output is a spatial dataset of continuous logistic values that ranges from 0-1 with lower values representing areas predicted to be less suitable habitat and higher values representing areas predicted to be more suitable habitat (Figures 4 & 5). The standard deviation in the model output across the averaged models is also calculated and plotted as a map to examine spatial variance of model output (Figure 6). The continuous output is reclassified into suitability classes and aggregated within 259-hectare hexagons (Figures 7-9).

In addition to the map of spatial variance in model output, we also evaluated the output of the Maxent model with absolute validation index (AVI) (Hirzel et al. 2006) and deviance (Phillips and Dudik 2008). These metrics are described below in the results (Table 5). True skill statistic (TSS) (Allouche et al. 2006), symmetric extremal dependence index (SEDI) (Wunderlich et al. 2019), and Area Under the Curve (AUC) values are also displayed for reference but are not used for evaluation (Lobo et al. 2008). Finally, a deviance value was calculated for each test data observation as a measure of how well model output matched what the model predicted for the location of test observations and this was plotted with larger symbols indicating larger deviance (see Figure 5). In practice, we have found large deviance values to be associated with records that are incorrectly or imprecisely mapped, problematic areas in underlying environmental layers, regions where species have few observations outside of the core portion of their range, or insufficient models with poor performance.
Table 1: Model Data Selection Criteria and Summary

<table>
<thead>
<tr>
<th>Location Data Source</th>
<th>Montana Natural Heritage Program Databases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Number of Records</td>
<td>47</td>
</tr>
<tr>
<td>Location Data Selection Rule 1 – Valid and Accurate Records</td>
<td>Records with <= 800 meters of locational uncertainty for years after 1960</td>
</tr>
<tr>
<td>Number of Locations Meeting Selection Rule 1</td>
<td>34</td>
</tr>
<tr>
<td>Location Data Selection Rule 2 – Spatially Unique Records</td>
<td>No overlap in locations within 800 meters in order to avoid spatial autocorrelation</td>
</tr>
<tr>
<td>Observation Records used in Model (Locations Meeting Selection Rules 1 & 2)</td>
<td>18</td>
</tr>
<tr>
<td>Number of Model Background Locations*</td>
<td>23,365</td>
</tr>
</tbody>
</table>

* Background locations are chosen at random and in proportion to the percent of the state covered by a species’ geographic range, with a maximum of 60,000 locations. Although these locations only represent ~0.1% of the pixels in any modeled area, this level of sampling is sufficient to estimated distributions of environmental conditions present (Phillips and Dudik 2008).

Table 2: Environmental Layers and Corresponding Variables*

<table>
<thead>
<tr>
<th>Layer Name</th>
<th>Variable</th>
<th>Layer Name</th>
<th>Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC_AgDry_97</td>
<td>Developed - Dry Agriculture</td>
<td>NED_AspectEW</td>
<td>Aspect (East-West)</td>
</tr>
<tr>
<td>LC_AgIrr_97</td>
<td>Developed - Irrigated Lands</td>
<td>NED_AspectNS</td>
<td>Aspect (North-South)</td>
</tr>
<tr>
<td>LC_Alpine_97</td>
<td>Alpine</td>
<td>NED_Elevation</td>
<td>Elevation</td>
</tr>
<tr>
<td>LC_Barren_97</td>
<td>Sparse and Barren</td>
<td>NED_Ruggedness</td>
<td>Ruggedness</td>
</tr>
<tr>
<td>LC_Developed_97</td>
<td>Developed - All Other</td>
<td>NED_Slope</td>
<td>Slope</td>
</tr>
<tr>
<td>LC_ForestBurn_97</td>
<td>Forest - Burned</td>
<td>NED_SRISummer</td>
<td>Summer Solar Radiation</td>
</tr>
<tr>
<td>LC_ForestConif_97</td>
<td>Forest - Conifer</td>
<td>NED_SRIWinter</td>
<td>Winter Solar Radiation</td>
</tr>
<tr>
<td>LC_ForestDecid_97</td>
<td>Forest - Deciduous</td>
<td>NED_TPI</td>
<td>Topographic Position Index</td>
</tr>
<tr>
<td>LC_ForestHarv_97</td>
<td>Forest - Harvested</td>
<td>NHD_Dist2WaterEdge</td>
<td>Distance to Water Edge</td>
</tr>
<tr>
<td>LC_ForestInsect_97</td>
<td>Forest - Insect Killed</td>
<td>NHP_AnthroInfl</td>
<td>Anthropogenic Influence</td>
</tr>
<tr>
<td>LC_Grassland_97</td>
<td>Grasslands</td>
<td>NRCS_FrostFreeDays</td>
<td>Frost Free Days</td>
</tr>
<tr>
<td>LC_IntroVeg_97</td>
<td>Introduced Vegetation</td>
<td>NRCS_REAP</td>
<td>Relative Effective Annual Precipitation</td>
</tr>
<tr>
<td>LC_ShrubBurn_97</td>
<td>Shrublands - Burned</td>
<td>PRISM_Precipitation</td>
<td>Annual Precipitation</td>
</tr>
<tr>
<td>LC_Shrubland_97</td>
<td>Shrublands</td>
<td>PRISM_WinPrecip</td>
<td>Percent Winter Precipitation</td>
</tr>
<tr>
<td>LC_WetRip_97</td>
<td>Wetland & Riparian</td>
<td>SoilGrid_BD</td>
<td>Bulk Density</td>
</tr>
<tr>
<td>LC_Dist2Forest</td>
<td>Distance to Forest</td>
<td>SoilGrid_Clay</td>
<td>Percent Clay</td>
</tr>
<tr>
<td>MCO_DegreeDays</td>
<td>Degree Days</td>
<td>SoilGrid_EC</td>
<td>Electric Conductivity</td>
</tr>
<tr>
<td>MCO_MaxSumTemp</td>
<td>Maximum Summer Temp</td>
<td>SoilGrid_OrgC</td>
<td>Organic Carbon</td>
</tr>
<tr>
<td>MCO_MinWinTemp</td>
<td>Minimum Winter Temp</td>
<td>SoilGrid_pH</td>
<td>Soil pH</td>
</tr>
<tr>
<td>MCO_NDVI</td>
<td>Normalized Difference Vegetation Index</td>
<td>SoilGrid_Sand</td>
<td>Percent Sand</td>
</tr>
<tr>
<td>MTGeol_Dist2Alluv</td>
<td>Distance to Alluvium</td>
<td>SoilGrid_Silt</td>
<td>Percent Silt</td>
</tr>
<tr>
<td>MTGeol_Dist2C03</td>
<td>Distance to Carbonate Rock</td>
<td>SoilGrid_TotN</td>
<td>Total Nitrogen</td>
</tr>
</tbody>
</table>

* Additional details and sources available in Appendix.
Inductive Model Results

Table 3: Top Ten Contributing Environmental Variables to Model Fit

<table>
<thead>
<tr>
<th>Variable</th>
<th>Percent Contribution</th>
<th>Variable</th>
<th>Percent Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetland Riparian</td>
<td>21.2%</td>
<td>Developed - Dry Agriculture</td>
<td>4.7%</td>
</tr>
<tr>
<td>Frost Free Days</td>
<td>20.9%</td>
<td>Aspect (East-West)</td>
<td>3.8%</td>
</tr>
<tr>
<td>Slope</td>
<td>10.6%</td>
<td>mtgeol_dist2co3</td>
<td>3.5%</td>
</tr>
<tr>
<td>Electric Conductivity</td>
<td>5.9%</td>
<td>Soil pH</td>
<td>3.1%</td>
</tr>
<tr>
<td>Ruggeness</td>
<td>5.0%</td>
<td>Topographic Position Index</td>
<td>2.7%</td>
</tr>
</tbody>
</table>

* Relative contributions of the variables to the model based on changes in fit (gain) during iterations of the training algorithm.

Table 4: Habitat Suitability Thresholds and Areas of Suitable Habitat

<table>
<thead>
<tr>
<th>Measure</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimal Logistic Threshold</td>
<td>0.580</td>
</tr>
<tr>
<td>Moderate Logistic Threshold</td>
<td>0.145</td>
</tr>
<tr>
<td>Low Logistic Threshold</td>
<td>0.062</td>
</tr>
<tr>
<td>Area of predicted optimal habitat within modeled range</td>
<td>2,737.4 km2</td>
</tr>
<tr>
<td>Area of predicted moderate suitability habitat within modeled range</td>
<td>24,450.4 km2</td>
</tr>
<tr>
<td>Area of predicted low suitability habitat within modeled range</td>
<td>19,828.5 km2</td>
</tr>
<tr>
<td>Total area of predicted suitable habitat within modeled range</td>
<td>47,016.3 km2</td>
</tr>
<tr>
<td>Area of entire modeled range (percent of Montana)</td>
<td>148,186.2 km2 (38.9%)</td>
</tr>
</tbody>
</table>

* The logistic threshold where the percentage of test observations above the threshold is 10 or more times higher than would be expected if the observations were randomly distributed across logistic value classes (Hirzel et al. 2006) (see Figure 3). When sample sizes are small, it may be undetermined.

* **This is the cutoff recommended for use in management decisions.** The logistic threshold value where the percentage of test observations above the threshold is greater than what would be expected if the observations were randomly distributed across logistic value classes - in other words, when the modeled habitat is used more often than expected from its proportional availability on the landscape (Hirzel et al. 2006). When sample sizes are small, it may be undetermined.

* The logistic threshold between unsuitable and low suitability as determined by Maxent which balances data omission error with minimizing predicted suitable area (Phillips et al. 2017). This is a conservative threshold that should encompass nearly all potentially suitable habitat for a species. In practice, habitat with low suitability may represent landscapes of marginal or discontinuous habitat where suitable habitat patches of various sizes are isolated by unsuitable habitat.

Table 5: Evaluation Metrics

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low AVIa</td>
<td>66.7%</td>
</tr>
<tr>
<td>Moderate AVIa</td>
<td>55.6%</td>
</tr>
<tr>
<td>Optimal AVIa</td>
<td>38.9%</td>
</tr>
<tr>
<td>Average Testing Deviance (x ± sd)b</td>
<td>4.507 ± 4.971</td>
</tr>
<tr>
<td>TSS (Sensitivity + Specificity - 1)c</td>
<td>0.3716 (0.5556 + 0.8160 -1)</td>
</tr>
<tr>
<td>SEDIc</td>
<td>0.5198</td>
</tr>
<tr>
<td>Training AUCd</td>
<td>0.974</td>
</tr>
<tr>
<td>Test AUCe</td>
<td>0.803</td>
</tr>
</tbody>
</table>

* Absolute Validation Index: The proportion of test locations that fall above the low, moderate, or optimal logistic threshold (see Table 4).

* A measure of how well model output matched the location of test observations. In theory, everywhere a test location was located, the logistic value should have been 1.0. The deviance value for each test location is calculated as -2 times the natural log of the associated logistic output value. For example, the equivalent deviance values for the low, moderate and optimal logistic thresholds of this model would be 5.548, 3.866 and 1.089, respectively. Deviances for individual test locations are plotted in Figure 5. Average Testing Deviance less than the Moderate Deviance typically indicates good model performance.

* Ranges from -1 to 1, with a random or null model performing at a value of 0 and values 0.65 indicating moderate performance (0.8 generally good performance). The moderate threshold (0.145) is used to develop the confusion matrix for Sensitivity and Specificity metrics. Note that Specificity is calculated based on pseudo-absences (not true absences) and may be biased when large areas are modeled as moderate or optimal suitable habitat.

* The area under a curve obtained by plotting the true positive rate against 1 minus the false positive rate for model training observations (averaged over 10 folds). Values range from 0 to 1 with a random or null model performing at a value of 0.5.

* The same metric described in d, but calculated for test observations.
Figure 1. Jackknife assessment of contribution by individual environmental variables to training gain. Variables are ordered by reduction in gain without that variable (green), from greatest to least impact. Only the 25 most influential variables are shown.

Interpretation of individual environmental variables should be approached cautiously and may be inappropriate due to covariance between variables.
Figure 2. Response curves for the top four contributing environmental variables, mean value in red, +/- one standard deviation in blue. Response curves for additional environmental variables are available upon request.

Figure 3. Thresholds for moderate and optimal suitability classes as determined by linear fit.
Inductive Model Map Outputs

Figure 4. Continuous habitat suitability model logistic output (90-meter pixels); white area is not modeled.

Figure 5. Continuous habitat suitability model output with relative deviance for each observation. Low deviance points fall within optimal or moderate habitat; high deviance points are in generally unsuitable habitat.
Figure 6. Standard deviation in the model output across the averaged models. Lower deviance (a solid blue map) indicates a better fitting model with lower variability between model iterations.

Figure 7. Model output for 90-meter pixels classified into habitat suitability classes.
Figure 8. Model output classified into habitat suitability classes and aggregated into hexagons at a scale of 259 hectares per hexagon. This is the finest scale suggested for management decisions and survey planning.

Figure 9. Model output classified into habitat suitability classes and aggregated into hexagons; observations used for modeling are displayed for reference.
Literature Cited

Appendix

Table A. Detailed Descriptions of Environmental Layers

<table>
<thead>
<tr>
<th>Layer Name</th>
<th>Class</th>
<th>Variable</th>
<th>Original Scale</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC_AgDry_97</td>
<td>Landcover</td>
<td>Developed - Dry Agriculture</td>
<td>30m</td>
<td>Proportion (0-1) of cells classed as Agriculture without irrigation within a 97-cell neighborhood (~150m radius).</td>
</tr>
<tr>
<td>LC_Aglrr_97</td>
<td>Landcover</td>
<td>Developed - Irrigated Lands</td>
<td>30m</td>
<td>Proportion (0-1) of cells classed as Agriculture with irrigation within a 97-cell neighborhood (~150m radius).</td>
</tr>
<tr>
<td>LC_Alpine_97</td>
<td>Landcover</td>
<td>Alpine</td>
<td>30m</td>
<td>Proportion (0-1) of cells classed as Alpine cover types within a 97-cell neighborhood (~150m radius).</td>
</tr>
<tr>
<td>LC_Barren_97</td>
<td>Landcover</td>
<td>Sparse and Barren</td>
<td>30m</td>
<td>Proportion (0-1) of cells classed as Sparse or Barren within a 97-cell neighborhood (~150m radius).</td>
</tr>
<tr>
<td>LC_Developed_97</td>
<td>Landcover</td>
<td>Developed - All Other</td>
<td>30m</td>
<td>Proportion (0-1) of cells classed as Developed (e.g. towns, roads, mines) within a 97-cell neighborhood (~150m radius).</td>
</tr>
<tr>
<td>LC_ForestBurn_97</td>
<td>Landcover</td>
<td>Forest - Burned</td>
<td>30m</td>
<td>Proportion (0-1) of cells classed as Burned Forest within a 97-cell neighborhood (~150m radius).</td>
</tr>
<tr>
<td>LC_ForestConif_97</td>
<td>Landcover</td>
<td>Forest - Conifer</td>
<td>30m</td>
<td>Proportion (0-1) of cells classed as Conifer Forest within a 97-cell neighborhood (~150m radius).</td>
</tr>
<tr>
<td>LC_ForestDecid_97</td>
<td>Landcover</td>
<td>Forest - Deciduous</td>
<td>30m</td>
<td>Proportion (0-1) of cells classed as Deciduous Forest within a 97-cell neighborhood (~150m radius).</td>
</tr>
<tr>
<td>LC_ForestHarv_97</td>
<td>Landcover</td>
<td>Forest - Harvested</td>
<td>30m</td>
<td>Proportion (0-1) of cells classed as Harvest Forest within a 97-cell neighborhood (~150m radius).</td>
</tr>
<tr>
<td>LC_ForestInsect_97</td>
<td>Landcover</td>
<td>Forest - Insect Killed</td>
<td>30m</td>
<td>Proportion (0-1) of cells classed as Insect Killed Forest within a 97-cell neighborhood (~150m radius).</td>
</tr>
<tr>
<td>LC_Grassland_97</td>
<td>Landcover</td>
<td>Grasslands</td>
<td>30m</td>
<td>Proportion (0-1) of cells classed as Grassland cover types within a 97-cell neighborhood (~150m radius).</td>
</tr>
<tr>
<td>LC_IntroVeg_97</td>
<td>Landcover</td>
<td>Introduced Vegetation</td>
<td>30m</td>
<td>Proportion (0-1) of cells classed as Introduced Vegetation within a 97-cell neighborhood (~150m radius).</td>
</tr>
<tr>
<td>LC_ShrubBurn_97</td>
<td>Landcover</td>
<td>Shrublands - Burned</td>
<td>30m</td>
<td>Proportion (0-1) of cells classed as Burned Shrubland within a 97-cell neighborhood (~150m radius).</td>
</tr>
<tr>
<td>LC_Shrubland_97</td>
<td>Landcover</td>
<td>Shrublands</td>
<td>30m</td>
<td>Proportion (0-1) of cells classed as Shrubland cover types within a 97-cell neighborhood (~150m radius).</td>
</tr>
<tr>
<td>LC_WetRip_97</td>
<td>Landcover</td>
<td>Wetland Riparian</td>
<td>30m</td>
<td>Proportion (0-1) of cells classed as Wetland or Riparian within a 97-cell neighborhood (~150m radius).</td>
</tr>
<tr>
<td>LC_Dist2Forest</td>
<td>Landcover</td>
<td>Distance to Forest</td>
<td>30m</td>
<td>Distance in meters to any forest cover type, after consolidating to patches 900m².</td>
</tr>
<tr>
<td>MCO_DegreeDays</td>
<td>Climate</td>
<td>Degree Days</td>
<td>800m</td>
<td>Average annual total of degree days (°F) above 32°F for 1981-2010.</td>
</tr>
<tr>
<td>MCO_MaxSumTemp</td>
<td>Climate</td>
<td>Maximum Summer Temp</td>
<td>800m</td>
<td>Average maximum temperature (°C) in July for 1981-2010.</td>
</tr>
<tr>
<td>MCO_MinWinTemp</td>
<td>Climate</td>
<td>Minimum Winter Temp</td>
<td>800m</td>
<td>Average minimum temperature (°C) in January for 1981-2010.</td>
</tr>
<tr>
<td>MCO_NDVI</td>
<td>Climate</td>
<td>Normalized Difference Vegetation Index</td>
<td>925m</td>
<td>Normalized Difference Vegetation as a measure of yearly mean greenness from the MODIS Terra satellite, 2000-2014.</td>
</tr>
<tr>
<td>MTGeol_Dist2Alluv</td>
<td>Geology</td>
<td>Distance to Alluvium</td>
<td>vector</td>
<td>Distance in meters to alluvial, glacial, or other unconsolidated surface geology types.</td>
</tr>
<tr>
<td>MTGeol_Dist2C03</td>
<td>Geology</td>
<td>Distance to Carbonate Rock</td>
<td>vector</td>
<td>Distance in meters to geological units with major components of either limestone or dolostone.</td>
</tr>
<tr>
<td>Layer Name</td>
<td>Class</td>
<td>Variable</td>
<td>Original Scale</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------</td>
<td>-----------------------------------</td>
<td>----------------</td>
<td>---</td>
</tr>
<tr>
<td>NED_AspectEW</td>
<td>Landform</td>
<td>Aspect (East-West)</td>
<td>≈10m</td>
<td>Aspect of slopes, ranging from 1 (east) to -1 (west).</td>
</tr>
<tr>
<td>NED_AspectNS</td>
<td>Landform</td>
<td>Aspect (North-South)</td>
<td>≈10m</td>
<td>Aspect of slopes, ranging from 1 (north) to -1 (south).</td>
</tr>
<tr>
<td>NED_Elevation</td>
<td>Landform</td>
<td>Elevation</td>
<td>≈10m</td>
<td>Elevation in meters above mean sea level.</td>
</tr>
<tr>
<td>NED_Ruggedness</td>
<td>Landform</td>
<td>Ruggedness</td>
<td>≈10m</td>
<td>Vector ruggedness measure from 0 (flat) to 1 (rugged), based on 5-cell neighborhood.</td>
</tr>
<tr>
<td>NED_Slope</td>
<td>Landform</td>
<td>Slope</td>
<td>≈10m</td>
<td>Percent slope (x100) of landscape.</td>
</tr>
<tr>
<td>NED_SRISummer</td>
<td>Landform</td>
<td>Summer Solar Radiation</td>
<td>≈10m</td>
<td>Solar radiation (WH/m²) for the day of the summer solstice.</td>
</tr>
<tr>
<td>NED_SRIWinter</td>
<td>Landform</td>
<td>Winter Solar Radiation</td>
<td>≈10m</td>
<td>Solar radiation (WH/m²) for the day of the winter solstice.</td>
</tr>
<tr>
<td>NED_TPI</td>
<td>Landform</td>
<td>Topographic Position Index</td>
<td>≈10m</td>
<td>Relative topographic position, based on a 5- to 10-cell radius envelope; positive values represent ridges, negative values are valleys/drainages.</td>
</tr>
<tr>
<td>NHD_Dist2WaterEdge</td>
<td>Hydrography</td>
<td>Distance to Water Edge</td>
<td>vector</td>
<td>Distance in meters to edges of lakes, reservoirs, streams, or rivers, as mapped in high resolution NHD.</td>
</tr>
<tr>
<td>NHP_AnthroInfl</td>
<td>Human</td>
<td>Anthropogenic Influence</td>
<td>vector</td>
<td>An index of human impact on landscape, based on structure density and road use.</td>
</tr>
<tr>
<td>NRCS_FrostFreeDays</td>
<td>Climate</td>
<td>Frost Free Days</td>
<td>30m</td>
<td>Estimated number of days without frost: daily minimum temperature 0°C based on a 5 in 10 year probability.</td>
</tr>
<tr>
<td>NRCS_REAP</td>
<td>Climate</td>
<td>Relative Effective Annual Precipitation</td>
<td>10m</td>
<td>REAP, an adjusted annual precipitation estimate enhanced with DEM attributes (cm) over 30 years.</td>
</tr>
<tr>
<td>PRISM_Precipitation</td>
<td>Climate</td>
<td>Annual Precipitation</td>
<td>≈800m</td>
<td>Average annual precipitation (mm) for 1981-2010.</td>
</tr>
<tr>
<td>PRISM_WinPrecip</td>
<td>Climate</td>
<td>Percent Winter Precipitation</td>
<td>≈800m</td>
<td>Average percent (0 to 1) of the total annual precipitation that occurs during winter (Nov-Apr) for 1981-2010.</td>
</tr>
<tr>
<td>SoilGrid_BD</td>
<td>Soils</td>
<td>Bulk Density</td>
<td>100m</td>
<td>Bulk density (inversely related to pore space), g/cm³ (0-5cm depth).</td>
</tr>
<tr>
<td>SoilGrid_Clay</td>
<td>Soils</td>
<td>Percent Clay</td>
<td>100m</td>
<td>Percent Clay in soil (0-5cm depth).</td>
</tr>
<tr>
<td>SoilGrid_EC</td>
<td>Soils</td>
<td>Electric Conductivity</td>
<td>100m</td>
<td>Electric conductivity (measure of salinity) of soil, dS/m (x100) (0-5cm depth).</td>
</tr>
<tr>
<td>SoilGrid_OrgC</td>
<td>Soils</td>
<td>Organic Carbon</td>
<td>100m</td>
<td>Soil organic carbon, % weight (x1000) (0-5cm depth).</td>
</tr>
<tr>
<td>SoilGrid_pH</td>
<td>Soils</td>
<td>Soil pH</td>
<td>100m</td>
<td>Soil pH (0-5cm depth).</td>
</tr>
<tr>
<td>SoilGrid_Sand</td>
<td>Soils</td>
<td>Percent Sand</td>
<td>100m</td>
<td>Percent Sand in soil (0-5cm depth).</td>
</tr>
<tr>
<td>SoilGrid_Silt</td>
<td>Soils</td>
<td>Percent Silt</td>
<td>100m</td>
<td>Percent Silt in soil (0-5cm depth); derived, based on Sand and Clay percentages.</td>
</tr>
<tr>
<td>SoilGrid_TotN</td>
<td>Soils</td>
<td>Total Nitrogen</td>
<td>100m</td>
<td>Total nitrogen in soil, % weight (x1000) (0-5cm depth).</td>
</tr>
</tbody>
</table>

Data Sources/Environmental Layer Name Prefix Key

- LC - [Montana Land Use/Land Cover Dataset (MSDI)](http://msdi.mt.gov/)
- MCO - [Montana Climate Office (MSDI)](http://msdi.mt.gov/)
- MTGeol - [Montana Bureau of Mines Geology (MSDI)](http://msdi.mt.gov/)
- NED - [National Elevation Dataset (MSDI)](http://msdi.mt.gov/)
- NHD - [National Hydrological Dataset (MSDI)](http://msdi.mt.gov/)
- NRCS - [Natural Resources Conservation Service (MSDI)](http://msdi.mt.gov/)
- NHP - [NHP Data (unpublished)](http://msdi.mt.gov/)
- PRISM - [PRISM Climate Group (OSU)](http://msdi.mt.gov/)
- SoilGrid - [US48 Soil Grids 100m (PSU)](http://msdi.mt.gov/)
Data Use Terms and Conditions

• Montana Natural Heritage Program (MTNHP) products and services are based on biological data and the objective interpretation of those data by professional scientists. MTNHP does not advocate any particular philosophy of natural resource protection, management, development, or public policy.

• MTNHP has no natural resource management or regulatory authority. Products, statements, and services from MTNHP are intended to inform parties as to the state of scientific knowledge about certain natural resources, and to further develop that knowledge. The information is not intended as natural resource management guidelines or prescriptions or a determination of environmental impacts. MTNHP recommends consultation with appropriate state, federal, and tribal resource management agencies and authorities in the area where your project is located.

• Information on the status and spatial distribution of biological resources produced by MTNHP are intended to inform parties of the state-wide status, known occurrence, or the likelihood of the presence of those resources. These products are not intended to substitute for field-collected data, nor are they intended to be the sole basis for natural resource management decisions.

• MTNHP does not portray its data as exhaustive or comprehensive inventories of rare species or biological communities. Field verification of the absence or presence of sensitive species and biological communities will always be an important obligation of users of our data.

• MTNHP responds equally to all requests for products and services, regardless of the purpose or identity of the requester.

• Because MTNHP constantly updates and revises its databases with new data and information, products will become outdated over time. Interested parties are encouraged to obtain the most current information possible from MTNHP, rather than using older products. We add, review, update, and delete records on a daily basis. Consequently, we strongly advise that you update your MTNHP data sets at a minimum of every three months for most applications of our information.

• MTNHP data require a certain degree of biological expertise for proper analysis, interpretation, and application. Our staff is available to advise you on questions regarding the interpretation or appropriate use of the data that we provide. Contact information for MTNHP staff is posted at: http://mtnhp.org/contact.asp

• The information provided to you by MTNHP may include sensitive data that if publicly released might jeopardize the welfare of threatened, endangered, or sensitive species or biological communities. This information is intended for distribution or use only within your department, agency, or business. Subcontractors may have access to the data during the course of any given project but should not be given a copy for their use on subsequent, unrelated work.

• MTNHP data are made freely available. Duplication of hard-copy or digital MTNHP products with the intent to sell is prohibited without written consent by MTNHP. Should you be asked by individuals outside your organization for the type of data that we provide, please refer them to MTNHP.

• MTNHP and appropriate staff members should be appropriately acknowledged as an information source in any third-party product involving MTNHP data, reports, papers, publications, or in maps that incorporate MTNHP graphic elements. The following is a suggested data citation format: Montana Natural Heritage Program. {date type} for {species or species group} in {geographic filter, if applicable} Montana [Data set]. Retrieved January 1, 2020. Available from: http://mtnhp.org

• Sources of our data include museum specimens, published and unpublished scientific literature, field surveys by state and federal agencies and private contractors, and reports from knowledgeable individuals. MTNHP actively solicits and encourages additions, corrections and updates, new observations or collections, and comments on any data we provide.

• MTNHP staff and contractors do not cross or survey privately-owned lands without express permission from the landowner. However, the program cannot guarantee that information provided to us by others was obtained under adherence to this policy.
Suggested Contacts for Natural Resource Agencies
As required by Montana statute (MCA 90-15), the Montana Natural Heritage Program works with state, federal, tribal, nongovernmental organizations, and private partners to ensure that the latest animal and plant distribution and status information is incorporated into our databases so that it can be used to inform a variety of planning processes and management decisions. In addition to the information you receive from us, we encourage you to contact state, federal, and tribal resource management agencies in the area where your project is located. They may have additional data or management guidelines relevant to your efforts. In particular, we encourage you to contact the Montana Department of Fish, Wildlife, and Parks for the latest data and management information regarding hunted and high profile management species and to use the U.S. Fish and Wildlife Service’s Information Planning and Conservation (IPAC) website http://ecos.fws.gov/ipac/ regarding U.S. Endangered Species Act listed Threatened, Endangered, or Candidate species.

For your convenience, we have compiled a list of relevant agency contacts and links below; check our website for updates.

Montana Fish, Wildlife, and Parks

<table>
<thead>
<tr>
<th>Fish Species</th>
<th>Contact(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Bison</td>
<td>Zachary Shattuck zshattuck@mt.gov (406) 444-1231 or Eric Roberts eroberts@mt.gov (406) 444-5334</td>
</tr>
<tr>
<td>Black-footed Ferret</td>
<td></td>
</tr>
<tr>
<td>Black-tailed Prairie Dog</td>
<td></td>
</tr>
<tr>
<td>Bald Eagle</td>
<td></td>
</tr>
<tr>
<td>Golden Eagle</td>
<td></td>
</tr>
<tr>
<td>Common Loon</td>
<td></td>
</tr>
<tr>
<td>Least Tern</td>
<td></td>
</tr>
<tr>
<td>Piping Plover</td>
<td></td>
</tr>
<tr>
<td>Whooping Crane</td>
<td></td>
</tr>
<tr>
<td>Grizzly Bear</td>
<td>Lauri Hanauska-Brown LHanauska-Brown@mt.gov (406) 444-5209</td>
</tr>
<tr>
<td>Greater Sage Grouse</td>
<td></td>
</tr>
<tr>
<td>Trumpeter Swan</td>
<td></td>
</tr>
<tr>
<td>Big Game</td>
<td>John Vore jvore@mt.gov (406) 444-5209</td>
</tr>
<tr>
<td>Upland Game Birds</td>
<td></td>
</tr>
<tr>
<td>Furbearers</td>
<td></td>
</tr>
<tr>
<td>Managed Terrestrial Game and Nongame Animal Data</td>
<td>Smith Wells – MFWP Data Analyst smith.wells@mt.gov (406) 444-3759</td>
</tr>
<tr>
<td>Fisheries Data</td>
<td>Ryan Alger – MFWP Data Analyst ryan.alger@mt.gov (406) 444-5365</td>
</tr>
<tr>
<td>Fish and Wildlife Recommendations for Subdivision Development</td>
<td>Renee Lemon RLeamon@mt.gov (406) 444-3738 See also: http://fwp.mt.gov/fishAndWildlife/livingWithWildlife/buildingWithWildlife/subdivisionRecommendations/</td>
</tr>
<tr>
<td>Regional Contacts</td>
<td>Region 1 (Kalispell) (406) 752-5501 Region 2 (Missoula) (406) 542-5500 Region 3 (Bozeman) (406) 994-4042 Region 4 (Great Falls) (406) 454-5840 Region 5 (Billings) (406) 247-2940 Region 6 (Glasgow) (406) 228-3700 Region 7 (Miles City) (406) 234-0900</td>
</tr>
</tbody>
</table>
United States Fish and Wildlife Service

Information Planning and Conservation (IPAC) website: http://ecos.fws.gov/ipac/

USFWS Information on Species Listed under the Endangered Species Act in Montana
https://www.fws.gov/montanafieldoffice/Endangered_Species/Species_information.html

Bureau of Land Management

<table>
<thead>
<tr>
<th>Montana Field Office Contacts:</th>
<th>Billings: (406) 896-5013</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Butte: (406) 533-7600</td>
</tr>
<tr>
<td></td>
<td>Dillon: (406) 683-8000</td>
</tr>
<tr>
<td></td>
<td>Glasgow: (406) 228-3750</td>
</tr>
<tr>
<td></td>
<td>Havre: (406) 262-2820</td>
</tr>
<tr>
<td></td>
<td>Lewistown: (406) 538-1900</td>
</tr>
<tr>
<td></td>
<td>Malta: (406) 654-5100</td>
</tr>
<tr>
<td></td>
<td>Miles City: (406) 233-2800</td>
</tr>
<tr>
<td></td>
<td>Missoula: (406) 329-3914</td>
</tr>
</tbody>
</table>

United States Forest Service

<table>
<thead>
<tr>
<th>Wildlife Program Leader</th>
<th>Tammy Fletcher</th>
<th>tammyfletcher@fs.fed.us</th>
<th>(406) 329-3588</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wildlife Ecologist</td>
<td>Cara Staab</td>
<td>cstaab@fs.fed.us</td>
<td>(406) 329-3677</td>
</tr>
<tr>
<td>Fish Program Leader</td>
<td>Scott Spaulding</td>
<td>scottspaulding@fs.fed.us</td>
<td>(406) 329-3287</td>
</tr>
<tr>
<td>Fish Ecologist</td>
<td>Cameron Thomas</td>
<td>cathomas@fs.fed.us</td>
<td>(406) 329-3087</td>
</tr>
<tr>
<td>TES Program</td>
<td>Lydia Allen</td>
<td>lrallen@fs.fed.us</td>
<td>(406) 329-3558</td>
</tr>
<tr>
<td>Interagency Grizzly Bear Coordinator</td>
<td>Scott Jackson</td>
<td>sjackson03@fs.fed.us</td>
<td>(406) 329-3664</td>
</tr>
<tr>
<td>Regional Botanist</td>
<td>Steve Shelly</td>
<td>sshelly@fs.fed.us</td>
<td>(406) 329-3041</td>
</tr>
<tr>
<td>Invasive Species Program Manager</td>
<td>Michelle Cox</td>
<td>michelle.cox2@usda.gov</td>
<td>(406) 329-3669</td>
</tr>
</tbody>
</table>

Tribal Nations

<table>
<thead>
<tr>
<th>Assiniboine Gros Ventre Tribes – Fort Belknap Reservation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assiniboine Sioux Tribes – Fort Peck Reservation</td>
</tr>
<tr>
<td>Blackfeet Tribe - Blackfeet Reservation</td>
</tr>
<tr>
<td>Chippewa Creek Tribe - Rocky Boy’s Reservation</td>
</tr>
<tr>
<td>Crow Tribe – Crow Reservation</td>
</tr>
<tr>
<td>Little Shell Chippewa Tribe</td>
</tr>
<tr>
<td>Northern Cheyenne Tribe – Northern Cheyenne Reservation</td>
</tr>
<tr>
<td>Salish Kootenai Tribes - Flathead Reservation</td>
</tr>
</tbody>
</table>

Natural Heritage Programs and Conservation Data Centres in Surrounding States and Provinces

- Alberta Conservation Information Management System
- British Columbia Conservation Data Centre
- Idaho Natural Heritage Program
- North Dakota Natural Heritage Program
- Saskatchewan Conservation Data Centre
- South Dakota Natural Heritage Program
- Wyoming Natural Diversity Database
Invasive Species Management Contacts and Information

Aquatic Invasive Species
Montana Fish, Wildlife, and Parks Aquatic Invasive Species staff
Montana Department of Natural Resources and Conservation’s Aquatic Invasive Species Grant Program
Montana Invasive Species Council (MISC)
Upper Columbia Conservation Commission (UC3)

Noxious Weeds
Montana Weed Control Association Contacts Webpage
Montana Biological Weed Control Coordination Project
Montana Department of Agriculture - Noxious Weeds
Montana Weed Control Association
Montana Fish, Wildlife, and Parks - Noxious Weeds
Montana State University Integrated Pest Management Extension
Integrated Noxious Weed Management after Wildfires