Black and Gold Bumble Bee (*Bombus auricomus*)
Predicted Suitable Habitat Modeling

**Distribution Status:** Resident Year Round

**State Rank:** SNR

**Global Rank:** G4

**Modeling Overview**

*Created in Collaboration with:* the Montana Entomology Collection at MT State University

*Created by:* Braden Burkholder

*Creation Date:* September 24, 2016

*Evaluator:* Braden Burkholder

*Evaluation Date:* October 13, 2016

**Inductive Model Goal:** To predict the distribution and relative suitability of summer habitat at large spatial scales across the entire state of Montana.

**Inductive Model Performance:** This is a preliminary model created to identify areas warranting survey effort and refinements necessary for improving future models. The model was only examined briefly for obvious deficiencies. Data and model output need to be reviewed in greater detail prior to broad use of this model.

**Suggested Citation:** Montana Natural Heritage Program. 2016. Black and Gold Bumble Bee (*Bombus auricomus*) predicted suitable habitat models created on September 24, 2016. Montana Natural Heritage Program, Helena, MT. 11 pp.

Inductive Modeling

Model Limitations and Suggested Uses
This model is based on statewide biotic and abiotic layers originally mapped at a variety of spatial scales and standardized to 90x90 meter raster pixels. Furthermore, the spatial accuracy of the training and testing data are varied (typically 20-400 meters) and may result in additional statistical noise in the model. As a result, model outputs may not be appropriate for use on smaller areas or at fine spatial scales. Model outputs should not typically be used for planning efforts on land areas smaller than one quarter of a public land survey system (PLSS) section (<64 hectares) and model outputs for some species may only be appropriate for broader regional level planning efforts. Model outputs should not be used in place of on-the-ground surveys for species, and species experts should be consulted about the value of using model output to guide habitat management decisions for regional planning efforts or local projects. See Suggested Contacts for State and Federal Natural Resource Agencies attached to this document. We recommend contacting experts at the Montana Entomology Collection at MT State University with questions about this species.

Inductive Model Methods

Modeling Process
Presence-only data were obtained from the Montana Entomology Collection’s Bumble Bees of Montana project and their collaboration with Hymenoptera Online. These data were then filtered to ensure spatial and temporal accuracy and to reduce spatial auto-correlation (summarized in Table 1). The spatial extent of this model was limited to the known geographic range of the species, by season when applicable, in order to accurately assess potentially available habitat.

We then used these data and 19 statewide biotic and abiotic layers (Table 2) to construct the model using a maximum entropy algorithm employed in the modeling program Maxent (Phillips et al. 2006, Ecological Modeling 190:231-259). Entropy maximization modeling functions by first calculating constraints and then applying the constraints to estimate a predicted distribution. The mean, variance, etc. of the environmental variables at the training data locations are used to estimate the constraint distributions. Maxent requires that the final predicted distribution fulfills these constraints. Maxent avoids overfitting of models to the training data by “regularizing” or relaxing the constraints so that modeled distributions only have to be close to, rather than exactly equal to, the constraint distributions (Elith et al. 2011, Diversity and Distributions 17:43-57).

Maxent fits a model by first assuming the predicted distribution is perfectly uniform in geographic space and moves away from this distribution only to the extent that it is forced to by the constraints. Constrained by training data, Maxent successively modifies the coefficients for each environmental variable via random walk, accepting the modified coefficient if it increases the gain. Gain is a measure of the closeness of the model concentration around the presence samples that is similar to goodness of fit in generalized linear models. The random walk of coefficients continues until either the increase in the gain falls below a set threshold or a set maximum number of iterations are performed. The gain value at the end of a model run indicates the likelihood of suitability of the presence samples relative to the likelihood for random background points. The overall gain
associated with individual environmental variables can be used as a measure of the relative importance of each variable (Merow et al. 2013, Ecography 36:1058-1069).

We employed a k-folds cross validation methodology, in this case using ten folds for model training and validation (Elith et al. 2011). Each fold consists of 90% of the data designated for training and 10% of the data reserved for testing. Each record is used for training nine times and testing once. Ten models are estimated and averaged to produce the final model presented here.

**Model Outputs and Evaluation**

The initial model output is a spatial dataset of continuous logistic values that ranges from 0-1 with lower values representing areas predicted to be less suitable habitat and higher values representing areas predicted to be more suitable habitat (Figure 2). The standard deviation in the model output across the averaged models is also calculated (Figure 3). If enough observations were available to train and evaluate the models, the continuous output is reclassified into suitability classes - unsuitable, low suitability, moderate suitability, and high suitability. Thresholds for defining suitability classes are presented and described below (Table 4).

We evaluated the output of the Maxent model with two metrics, an absolute validation index (AVI) (Hirzel et al. 2006, Ecological Modelling 199:142-152) and deviance (Phillips and Dudik 2008, Ecography 31: 161-175). These metrics are described below in the results (Table 5). Area under the curve (AUC) values are also displayed for reference, but are not used for evaluation (Lobo et al. 2008, Global Ecology and Biogeography 17:145-151). Additionally, standard deviation in logistic output of the ten individual models is plotted as a map to examine spatial variance of model output. Finally, a deviance value was calculated for each test data observation as a measure of how well model output matched the location of test observations. In theory, everywhere a test observation was located, the logistic value should have been 1.0. The deviance value for each test observation is calculated as -2 times the natural log of the associated logistic output value.

**Table 1: Model Data Selection Criteria and Summary**

<table>
<thead>
<tr>
<th>Location Data Source</th>
<th>Montana Natural Heritage Program Databases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Number of Records</td>
<td>4</td>
</tr>
<tr>
<td>Location Data Selection Rule 1</td>
<td>Records with &lt;= 800 meters of locational uncertainty</td>
</tr>
<tr>
<td>Number of Locations Meeting Selection Rule 1</td>
<td>3</td>
</tr>
<tr>
<td>Location Data Selection Rule 2</td>
<td>No overlap in locations within 1600 meters in order to avoid spatial autocorrelation</td>
</tr>
<tr>
<td>Observation Records used in Model</td>
<td>3</td>
</tr>
<tr>
<td>(Locations Meeting Selection Rules 1 &amp; 2)</td>
<td>Entire state, Year-round</td>
</tr>
<tr>
<td>Number of Model Background Locations</td>
<td>60,000</td>
</tr>
</tbody>
</table>
Table 2: Environmental Layer Information

<table>
<thead>
<tr>
<th>Layer</th>
<th>Identifier</th>
<th>Original Scale</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land Cover</td>
<td>catesys</td>
<td>30m</td>
<td>Categorical. Landcover classes (25) from the 2016 Montana Spatial Data Infrastructure Land Cover Framework; Level 2 classes used with a few minor changes including removal of linear and point features: Alpine Grassland and Shrubland, Alpine Sparse and Barren, Conifer-dominated Forest and Woodland (mesic-wet), Conifer-dominated Forest and Woodland (xeric-mesic), Deciduous dominated forest and woodland, Mixed deciduous/coniferous forest and woodland, Lowland/Prairie Grassland, Montane Grassland, Agriculture, Introduced Vegetation/Pasture/Hay, Developed, Mining and Resource Extraction, Wetland or Marsh, Floodplain and Riparian, Open Water, Wet meadow, Harvested Forest, Insect-Killed Forest, Introduced Vegetation, Recently burned, Deciduous Shrubland, Sagebrush Steppe or Desert Scrub, Sagebrush or Saltbush Shrubland, Bluff/Badland/Dune, Cliff/Canyon/Talus. Continuous. Prediction suitable habitat modeling: <a href="http://geoinfo.msl.mt.gov/msdi/land_use_land_cover">http://geoinfo.msl.mt.gov/msdi/land_use_land_cover</a>.</td>
</tr>
<tr>
<td>Geology</td>
<td>categol</td>
<td>vector</td>
<td>Categorical. Basic rock classes (5) as defined by USGS (plus water for large water bodies): Sedimentary, Unconsolidated, Metamorphic, Plutonic, and Volcanic. Continuous. For more information, visit <a href="https://mrdata.usgs.gov/geology/state/state.php?state=MT">https://mrdata.usgs.gov/geology/state/state.php?state=MT</a>.</td>
</tr>
<tr>
<td>Elevation</td>
<td>contelev</td>
<td>=10m</td>
<td>Continuous. Elevation in meters above mean sea level. Continuous. For more information, visit <a href="https://www.sciencebase.gov/catalog/item/4f70aa9fe4b058caae3fded5">https://www.sciencebase.gov/catalog/item/4f70aa9fe4b058caae3fded5</a>.</td>
</tr>
<tr>
<td>Aspect (East-West)</td>
<td>contewasp</td>
<td>=10m</td>
<td>Continuous. Aspect of slopes, ranging from 1 (east) to -1 (west). Continuous. For more information, visit <a href="https://www.sciencebase.gov/catalog/item/4f70aa9fe4b058caae3fded5">https://www.sciencebase.gov/catalog/item/4f70aa9fe4b058caae3fded5</a>.</td>
</tr>
<tr>
<td>Aspect (North-South)</td>
<td>contnsasp</td>
<td>=10m</td>
<td>Continuous. Aspect of slopes, ranging from 1 (north) to -1 (south). Continuous. For more information, visit <a href="https://www.sciencebase.gov/catalog/item/4f70aa9fe4b058caae3fded5">https://www.sciencebase.gov/catalog/item/4f70aa9fe4b058caae3fded5</a>.</td>
</tr>
<tr>
<td>Slope</td>
<td>contslope</td>
<td>=10m</td>
<td>Continuous. Percent slope (x100) of landscape. Continuous. For more information, visit <a href="https://www.sciencebase.gov/catalog/item/4f70aa9fe4b058caae3fded5">https://www.sciencebase.gov/catalog/item/4f70aa9fe4b058caae3fded5</a>.</td>
</tr>
<tr>
<td>Ruggedness</td>
<td>contvrm</td>
<td>=10m</td>
<td>Continuous. Vector ruggedness measure (0 to 1). Continuous. For more information, visit <a href="https://www.sciencebase.gov/catalog/item/4f70aa9fe4b058caae3fded5">https://www.sciencebase.gov/catalog/item/4f70aa9fe4b058caae3fded5</a>.</td>
</tr>
<tr>
<td>Summer Solar Radiation</td>
<td>contsumrad</td>
<td>=10m</td>
<td>Continuous. Solar radiation (WH/m²) for the day of the summer solstice. Continuous. For more information, visit <a href="https://www.sciencebase.gov/catalog/item/4f70aa9fe4b058caae3fded5">https://www.sciencebase.gov/catalog/item/4f70aa9fe4b058caae3fded5</a>.</td>
</tr>
<tr>
<td>Winter Solar Radiation</td>
<td>contwinrad</td>
<td>=10m</td>
<td>Continuous. Solar radiation (WH/m²) for the day of the winter solstice. Continuous. For more information, visit <a href="https://www.sciencebase.gov/catalog/item/4f70aa9fe4b058caae3fded5">https://www.sciencebase.gov/catalog/item/4f70aa9fe4b058caae3fded5</a>.</td>
</tr>
<tr>
<td>Annual NDVI</td>
<td>contndvi</td>
<td>900m</td>
<td>Continuous. Normalized Difference Vegetation as a measure of yearly mean greenness from the MODIS Terra satellite. Continuous. For more information, visit <a href="http://mco.cfc.umt.edu/ndvi/terra/yearly_normals/">http://mco.cfc.umt.edu/ndvi/terra/yearly_normals/</a>.</td>
</tr>
<tr>
<td>Annual Precipitation</td>
<td>contprecip</td>
<td>=800m</td>
<td>Continuous. Average annual precipitation (mm) for 1981-2010. Continuous. For more information, visit <a href="http://prism.orgeonstate.edu/normals/">http://prism.orgeonstate.edu/normals/</a>.</td>
</tr>
<tr>
<td>Percent Winter Precipitation</td>
<td>contwinpcp</td>
<td>=800m</td>
<td>Continuous. Average percent (0 to 1) of the total annual precipitation that occurs during winter (Nov-Apr) for 1981-2010. Continuous. For more information, visit <a href="http://prism.orgeonstate.edu/normals/">http://prism.orgeonstate.edu/normals/</a>.</td>
</tr>
<tr>
<td>Max Summer Temp</td>
<td>conttmax</td>
<td>800m</td>
<td>Continuous. Average maximum temperature (°C) in July for 1981-2010. Continuous. For more information, visit <a href="http://mco.cfc.umt.edu/tmax/monthly_normals/">http://mco.cfc.umt.edu/tmax/monthly_normals/</a>.</td>
</tr>
<tr>
<td>Min Winter Temp</td>
<td>conttmin</td>
<td>800m</td>
<td>Continuous. Average minimum temperature (°C) in January for 1981-2010. Continuous. For more information, visit <a href="http://mco.cfc.umt.edu/tmin/monthly_normals/">http://mco.cfc.umt.edu/tmin/monthly_normals/</a>.</td>
</tr>
<tr>
<td>Degree Days</td>
<td>contddays</td>
<td>800m</td>
<td>Continuous. Average total of degree days (°F) above 32°F for 1981-2010. Continuous. For more information, visit <a href="http://services.cfc.umt.edu/arcgis/rest/services/Atlas/Temperature_CropDegreeDays32F/ImageServer">http://services.cfc.umt.edu/arcgis/rest/services/Atlas/Temperature_CropDegreeDays32F/ImageServer</a>.</td>
</tr>
<tr>
<td>Distance to Stream</td>
<td>contstrmed</td>
<td>vector</td>
<td>Continuous. Distance to major streams in meters, based on major streams identified in TIGER files or USGS topographic maps (Stream_Lake_1993 dataset). Continuous. For more information, visit <a href="http://ftp.geoinfo.msl.mt.gov/Data/Spatial/NonMSDI/Shapefiles/">http://ftp.geoinfo.msl.mt.gov/Data/Spatial/NonMSDI/Shapefiles/</a>.</td>
</tr>
<tr>
<td>Distance to Forest Cover</td>
<td>contfrsted</td>
<td>30m</td>
<td>Continuous. Distance to any forest land cover type in meters. Continuous. For more information, visit <a href="http://geoinfo.msl.mt.gov/msdi/land_use_land_cover">http://geoinfo.msl.mt.gov/msdi/land_use_land_cover</a>.</td>
</tr>
</tbody>
</table>
**Inductive Model Results**

Table 3: Environmental Layer Contributions to Model Fit

<table>
<thead>
<tr>
<th>Layer ID</th>
<th>Percent Contribution&lt;sup&gt;a&lt;/sup&gt;</th>
<th>Layer ID</th>
<th>Percent Contribution&lt;sup&gt;a&lt;/sup&gt;</th>
</tr>
</thead>
<tbody>
<tr>
<td>contslope</td>
<td>31.9%</td>
<td>contnsasp</td>
<td>2.8%</td>
</tr>
<tr>
<td>catesys</td>
<td>18.0%</td>
<td>catsoilord</td>
<td>2.7%</td>
</tr>
<tr>
<td>contwinpcp</td>
<td>10.9%</td>
<td>contddays</td>
<td>1.7%</td>
</tr>
<tr>
<td>contewasp</td>
<td>10.5%</td>
<td>conttmin</td>
<td>0.9%</td>
</tr>
<tr>
<td>catsoiltemp</td>
<td>7.3%</td>
<td>contprecip</td>
<td>0.4%</td>
</tr>
<tr>
<td>contstrmed</td>
<td>4.5%</td>
<td>contriwin</td>
<td>0.0%</td>
</tr>
<tr>
<td>contndvi</td>
<td>4.5%</td>
<td>catgeol</td>
<td>0.0%</td>
</tr>
<tr>
<td>conftrsted</td>
<td>3.8%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<sup>a</sup> Relative contributions of the layers to the model based on changes in fit (gain) during iterations of the training algorithm.

Table 4: Habitat Suitability Thresholds

<table>
<thead>
<tr>
<th>Measure</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Logistic Threshold&lt;sup&gt;a&lt;/sup&gt;</td>
<td>0.063</td>
</tr>
<tr>
<td>Moderate Logistic Threshold&lt;sup&gt;b&lt;/sup&gt;</td>
<td>NA</td>
</tr>
<tr>
<td>Optimal Logistic Threshold&lt;sup&gt;c&lt;/sup&gt;</td>
<td>NA</td>
</tr>
<tr>
<td>Area of entire modeled range (percent of Montana)</td>
<td>380529.02 km² (100.0%)</td>
</tr>
<tr>
<td>Total area of predicted suitable habitat within modeled range</td>
<td>NA</td>
</tr>
<tr>
<td>Area of predicted low suitability habitat within modeled range</td>
<td>43,422.9 km²</td>
</tr>
<tr>
<td>Area of moderate suitability habitat within modeled range</td>
<td>NA</td>
</tr>
<tr>
<td>Area of predicted optimal habitat within modeled range</td>
<td>NA</td>
</tr>
</tbody>
</table>

<sup>a</sup> The logistic threshold between unsuitable and low suitability as determined by Maxent which balances training data omission error with predicted area.

<sup>b</sup> The logistic threshold value where the percentage of test observations above the threshold is what would be expected if the observations were randomly distributed across logistic value classes (Hirzel et al. 2006). This is equivalent to a null model. When sample sizes are small, it may be undetermined.

<sup>c</sup> The logistic threshold where the percentage of test observations above the threshold is 10 times higher than would be expected if the observations were randomly distributed across logistic value classes. When sample sizes are small, it may be undetermined.

Table 5: Evaluation Metrics

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low AVI&lt;sup&gt;a&lt;/sup&gt;</td>
<td>66.7%</td>
</tr>
<tr>
<td>Moderate AVI&lt;sup&gt;a&lt;/sup&gt;</td>
<td>NA</td>
</tr>
<tr>
<td>Optimal AVI&lt;sup&gt;a&lt;/sup&gt;</td>
<td>NA</td>
</tr>
<tr>
<td>Average Testing Deviance ((\bar{x} \pm \text{sd}))&lt;sup&gt;b&lt;/sup&gt;</td>
<td>6.665 ± 9.199</td>
</tr>
<tr>
<td>Training AUC&lt;sup&gt;c&lt;/sup&gt;</td>
<td>0.989</td>
</tr>
<tr>
<td>Test AUC&lt;sup&gt;d&lt;/sup&gt;</td>
<td>0.824</td>
</tr>
</tbody>
</table>

<sup>a</sup> Absolute Validation Index: The proportion of test locations that fall above the low, moderate, or optimal logistic threshold.

<sup>b</sup> A measure of how well model output matched the location of test observations. In theory, everywhere a test location was located, the logistic value should have been 1.0. The deviance value for each test location is calculated as \(-2\) times the natural log of the associated logistic output value. For example, the equivalent deviance values for the low, moderate and optimal logistic thresholds of this model would be 5.536, NA and NA, respectively. Deviances for individual test locations are plotted in Figure 6.

<sup>c</sup> The area under a curve obtained by plotting the true positive rate against 1 minus the false positive rate for model training observations (averaged over 10 folds). Values range from 0 to 1 with a random or null model performing at a value of 0.5.

<sup>d</sup> The same metric described in c, but calculated for test observations.
Figure 1. Jackknife assessment of contribution by individual environmental layers to training gain.

Figure 2. Response curves for the top three contributing environmental layers, mean value in red, +/- one standard deviation in blue. Response curves for additional environmental layers are available upon request.
Inductive Model Map Outputs

Figure 3. Continuous habitat suitability model output (logistic scale).

Figure 4. Standard deviation in the model output across the averaged models.
Figure 5. Continuous habitat suitability model output with the 3 observations used for modeling.

Figure 6. Continuous habitat suitability model output with relative deviance for each observation. Symbol size corresponds to the difference between 1.0 and the optimal, moderate, and low habitat suitability threshold.
Figure 7. Continuous habitat suitability model output with all 4 observations (black) and survey locations that could have detected the species (gray).
Suggested Contacts for State and Federal Natural Resource Agencies

As required by Montana statute (MCA 90-15), the Montana Natural Heritage Program works with state, federal, tribal, nongovernmental organizations, and private partners to ensure that the latest animal and plant distribution and status information is incorporated into our databases so that it can be used to inform a variety of planning processes and management decisions. In addition to the information you receive from us, we encourage you to contact state and federal resource management agencies in the area where your project is located. They may have additional data or management guidelines relevant to your efforts. In particular, we encourage you to contact the Montana Department of Fish, Wildlife, and Parks for the latest data and management information regarding hunted and high profile management species and to use the U.S. Fish and Wildlife Service’s Information Planning and Conservation (IPAC) website http://ecos.fws.gov/ipac/ regarding U.S. Endangered Species Act listed Threatened, Endangered, or Candidate species.

For your convenience, we have compiled a list of relevant agency contacts and links below:

<table>
<thead>
<tr>
<th>Montana Fish, Wildlife, and Parks</th>
<th>Zachary Shattuck <a href="mailto:zshattuck@mt.gov">zshattuck@mt.gov</a> (406) 444-1231 or Lee Nelson <a href="mailto:leenelson@mt.gov">leenelson@mt.gov</a> (406) 444-2447</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fish Species</td>
<td>Lauri Hanauska-Brown <a href="mailto:LHanauska-Brown@mt.gov">LHanauska-Brown@mt.gov</a> (406) 444-5209</td>
</tr>
<tr>
<td>American Bison</td>
<td>John Vore <a href="mailto:jvore@mt.gov">jvore@mt.gov</a> (406) 444-5209</td>
</tr>
<tr>
<td>Black-footed Ferret</td>
<td><a href="mailto:johnvore@mt.gov">johnvore@mt.gov</a></td>
</tr>
<tr>
<td>Black-tailed Prairie Dog</td>
<td>John Vore <a href="mailto:jvore@mt.gov">jvore@mt.gov</a> (406) 444-5209</td>
</tr>
<tr>
<td>Bald Eagle</td>
<td>Lauri Hanauska-Brown <a href="mailto:LHanauska-Brown@mt.gov">LHanauska-Brown@mt.gov</a> (406) 444-5209</td>
</tr>
<tr>
<td>Golden Eagle</td>
<td>Lauri Hanauska-Brown <a href="mailto:LHanauska-Brown@mt.gov">LHanauska-Brown@mt.gov</a> (406) 444-5209</td>
</tr>
<tr>
<td>Common Loon</td>
<td>Lauri Hanauska-Brown <a href="mailto:LHanauska-Brown@mt.gov">LHanauska-Brown@mt.gov</a> (406) 444-5209</td>
</tr>
<tr>
<td>Least Tern</td>
<td>Lauri Hanauska-Brown <a href="mailto:LHanauska-Brown@mt.gov">LHanauska-Brown@mt.gov</a> (406) 444-5209</td>
</tr>
<tr>
<td>Piping Plover</td>
<td>Lauri Hanauska-Brown <a href="mailto:LHanauska-Brown@mt.gov">LHanauska-Brown@mt.gov</a> (406) 444-5209</td>
</tr>
<tr>
<td>Whooping Crane</td>
<td>Lauri Hanauska-Brown <a href="mailto:LHanauska-Brown@mt.gov">LHanauska-Brown@mt.gov</a> (406) 444-5209</td>
</tr>
<tr>
<td>Managed Terrestrial Game and Nongame Animal Data</td>
<td>Adam Messer – MFWP Data Analyst (406) 444-0095, <a href="mailto:amesser@mt.gov">amesser@mt.gov</a></td>
</tr>
<tr>
<td>Fisheries Data</td>
<td>Bill Daigle – MFWP Fish Data Manager (406) 444-37377. <a href="mailto:bdaigle@mt.gov">bdaigle@mt.gov</a></td>
</tr>
<tr>
<td>Wildlife and Fisheries Scientific Collector’s Permits</td>
<td><a href="http://fw.mt.gov/doingBusiness/licenses/scientificWildlife/default.html">http://fw.mt.gov/doingBusiness/licenses/scientificWildlife/default.html</a> Merissa Hayes for Wildlife (406) 444-7321 <a href="mailto:merhayes@mt.gov">merhayes@mt.gov</a> Beth Giddings for Fisheries (406) 444-7319 <a href="mailto:begiddings@mt.gov">begiddings@mt.gov</a></td>
</tr>
<tr>
<td>Fish and Wildlife Recommendations for Subdivision Development</td>
<td>Renee Lemon <a href="mailto:Rlemon@mt.gov">Rlemon@mt.gov</a> (406) 444-3738 and see: <a href="http://fw.mt.gov/fishAndWildlife/livingWithWildlife/buildingWithWildlife/subdivisionRecommendations/">http://fw.mt.gov/fishAndWildlife/livingWithWildlife/buildingWithWildlife/subdivisionRecommendations/</a></td>
</tr>
<tr>
<td>Regional Contacts</td>
<td>Region 1 (Kalispell) (406) 752-5501</td>
</tr>
<tr>
<td></td>
<td>Region 2 (Missoula) (406) 542-5500</td>
</tr>
<tr>
<td></td>
<td>Region 3 (Bozeman) (406) 994-4042</td>
</tr>
<tr>
<td></td>
<td>Region 4 (Great Falls) (406) 454-5840</td>
</tr>
<tr>
<td></td>
<td>Region 5 (Billings) (406) 247-2940</td>
</tr>
<tr>
<td></td>
<td>Region 6 (Glasgow) (406) 228-3700</td>
</tr>
<tr>
<td></td>
<td>Region 7 (Miles City) (406) 234-0900</td>
</tr>
</tbody>
</table>
Bureau of Land Management

Montana Field Office Contacts:

Billings: (406) 896-5013  
Butte: (406) 533-7600  
Dillon: (406) 683-8000  
Glasgow: (406) 228-3750  
Havre: (406) 262-2820  
Lewistown: (406) 538-1900  
Malta: (406) 654-5100  
Miles City: (406) 233-2800  
Missoula: (406) 329-3914

United States Forest Service

Regional Office – Missoula, Montana Contacts

Wildlife Program Leader: Tammy Fletcher  tammyfletcher@fs.fed.us  (406) 329-3588  
Wildlife Ecologist: Cara Staab  cstaab@fs.fed.us  (406) 329-3677  
Fish Program Leader: Scott Spaulding  scottspaulding@fs.fed.us  (406) 329-3287  
Fish Ecologist: Cameron Thomas  cathomas@fs.fed.us  (406) 329-3087  
TES Program: Kristi Swisher  kswisher@fs.fed.us  (406) 329-3558  
Interagency Grizzly Bear Coordinator: Scott Jackson  sjackson03@fs.fed.us  (406) 329-3664  
Regional Botanist: Steve Shelly  sshelly@fs.fed.us  (406) 329-3041

U.S. Fish and Wildlife Service:

Information Planning and Conservation (IPAC) website: http://ecos.fws.gov/ipac/  