Montana Efforts to Monitor Year-Round Bat Activity Patterns and Roost Habitats

Update through June 1st, 2013

Montana Natural Heritage Program (Bryce Maxell, Susan Lenard, Paul Hendricks)

Northern Rocky Mountain Grotto (Daryl Greaser, Carl Bakker, Bob Bastasz, Ian Chechet, James Cummins, Mike McEachern) Big Fork Cave Club (Hans Bodenhamer, Big Fork High School students)

Montana Fish Wildlife and Parks (Lauri Hanauska-Brown, Kristi DuBois, Allison Begley, Rhea Armstrong, Lynette Kemp, Gene Davenport)

U.S. Forest Service (Amie Shovlain, Beth Hahn, Don Sasse, Courtney Frost, Jennie Holifield, Steve Johnsen, Allison Kolbe, Barb Pitman, Erich Pfalzer, Dan Seifert, Andrea Shortsleeve)

Bureau of Land Management (Jake Chaffin, Katie Iverson, Matt Comer, Chris Rye, Jo Christensen)

Montana Department of Environmental Quality (Mike Glenn, Chris Yde, Warren McCullough)

Fort Peck Tribal Office of Environmental Protection (Jeanne Spaur)

U.S. Fish and Wildlife Service (Christopher Servheen)

MPG Ranch (Kate Stone, Debbie Leick)

National Park Service (Lisa Bate)

Confederated Salish Kootenai Tribes (Janene Lichtenberg)

ABR Inc. (Nathan Schwab)

Bats of Montana - 5 Species of Concern - 4 Potential Species of Concern

Common Name	Scientific Name	4-Code	MT Range/No. Recs		
Pallid Bat	Antrozous pallidus	ANPA	44		
Townsend's Big-eared Bat	Corynorhinus townsendii	СОТО	261		
Big Brown Bat	Eptesicus fuscus	EPFU	773		
Spotted Bat	Euderma maculatum	EUMA	50		
Silver-haired Bat	Lasionycteris noctivagans	LANO	1,037		
Eastern Red Bat	Lasiurus borealis	LABO	21		
Hoary Bat	Lasiurus cinereus	LACI	828		
California Myotis	Myotis californicus	МУСА	159		
Western Small-footed Myotis	Myotis ciliolabrum	МҮСІ	636		
Long-eared Myotis	Myotis evotis	MYEV	820		
Little Brown Myotis	Myotis lucifugus	MYLU	1,165		
Northern Myotis	Myotis septentrionalis	MYSE	? 2		
Fringed Myotis	Myotis thysanodes	МҮТН	113		
Long-legged Myotis	Myotis volans	ΜΥΥΟ	316		
Yuma Myotis	Myotis yumanensis	ΜΥΥυ	23		

Major Bat Conservation Issues

Wind Turbine Impacts Documented White-Nose Syndrome and Wind Turbine Impacts Documented MT Range/No. Recs 4-Code **Common Name** Scientific Name Pallid Bat Antrozous pallidus ANPA 44 Townsend's Big-eared Bat Corynorhinus townsendii СОТО 261 **Big Brown Bat EPFU** 773 Eptesicus fuscus **EUMA** Spotted Bat Euderma maculatum 50 Lasionycteris noctivagans LANO 1,037 Silver-haired Bat Eastern Red Bat Lasiurus borealis LABO 21 LACI Hoary Bat Lasiurus cinereus 828 Myotis californicus MYCA California Myotis 159 Western Small-footed Myotis Myotis ciliolabrum MYCI 636 **MYEV** Long-eared Myotis Myotis evotis 820 MYLU Little Brown Myotis Myotis lucifugus 1,165 Myotis septentrionalis MYSE ? Northern Myotis 1 **Fringed Myotis** 113 MYTH Myotis thysanodes Long-legged Myotis 316 Myotis volans MYVO Yuma Myotis Myotis yumanensis MYYU 23

Information Needs/Objectives

- Centralization of winter and summer roost site data
- Overwintering locations and temperature and relative humidity of roosting areas
- Baseline activity levels within and outside of hibernacula
- Timing, routes, and other correlates of migration
- Focal studies at wind energy facilities
- Year-round spatial use of landscapes
- Year-round status information (occupancy rates, sizes of roost aggregations, activity levels)

Documentation of Roost Site Characteristics

Montana Bat Roosts

*Available through Natural Heritage Tracker http://mtnhp.org/Tracker/

Overview of Known Montana Bat Roosts

Elevation Class Frequencies of Known MT Bat Roosts

Elevation Class Frequencies of Caves and Mines Negative For Bats

Overview of Montana Bat Roost Use Types

Elevation Class Frequencies of Bat Roost Use Types

Montana Caves and Abandoned Lode Mines

Lots of potential roost habitat has not be surveyed!

Bats and Rock Outcrops

Bats detected in day roosts at 10% of rock outcrops – bat poops at most Pallid Bat, Big Brown Bat, Long-eared Myotis, Western Small-footed Myotis

Pallid Bat

in all is

Western Small-

footed Myotis

Bat Use of Bridges: Yellowstone River example

Bats = Day Roost

Droppings Only = Night Roost

Amie Shovlain (What a great poop photo!)

Bat Surveys of Montana Caves

• 61 Caves Surveyed for Bats

Montana Caves and Known Bat Hibernacula

Working with Grotto Members to Record Bats and Bat Sign

Thermal Images of Bats at Winter Roosts from James Cummins

Western Small-footed Myotis

Annual Estimates of Cave Visitation

Numbers of Bats at Montana Hibernacula **Old Dry Wolf Station Azure Cave** Whitaker Sink - 84 Myotis species - 63 Unidentified bats - 1751 Myotis species - 6 Townsend's Big-eared Bats Daniels Sheridan Glacier Lincoln pole Hill Liberty Blaine Valley Flathead Roosevelt Phillips Pondera 0 Richland Chouteau Teton McCone Cascade Dawson Garfield Fergus Petroleum Lewis and Clark Basin Prairie Wibaux 8 Meagher Silver King Mine Musselshell Granite Wheatland Fallon (36 Townsend's Golden Vall Broadwater Custer Big-eared Bat) Treasure Rosebud Jefferson Ravalli er Lodge Yellowstone Sweet Grass Stillwater Carter Big Horn Gallatin Park Powder River 1-5 Carbon 6 - 20 Beaverhead 21 - 84 **Mystery Cave Bull Mountains Coal Mine** 500 Myotis species - 22 Townsend's Big-eared Bat 85 - 505 3 Townsend's Big-eared Bat 14 Western Small-footed Myotis Lewis & Clark Caverns **Big Brown Bat** 14 Townsend's Big-eared Bat - 1 Long-eared Myotis 506 - 1757 3 Western Small-footed Myotis -Little Ice Cave - 12 Myotis species - 45 Myotis species

Numbers of Bats at Maternity and Bachelor Roosts

Soil Sampling for Geomyces destructans

February 28th, 2013

Deployment of Temperature and Relative Humidity Data Loggers in Montana Bat Hibernacula

Known Bat Hibernacula In Caves or Mines

HOBO Data Logger Deployed

G. destructans growth and Hibernacula Temps
Of 45 bat species in U.S., at least 6 of the 25 that hibernate have been documented with WNS

Colony expansion rates of *Geomyces destructans* when grown on cornmeal agar at 3, 7, 14, and 20°C. The trend line estimates colony expansion rates at temperatures ranging from 3–20°C. Blehert et al. 2007 Microbe 6(6): 267-273.

Montana Bat Winter Roost Temperatures

Colony expansion rates of *Geomyces destructans* when grown on cornmeal agar at 3, 7, 14, and 20°C. The trend line estimates colony expansion rates at temperatures ranging from 3–20°C. Blehert et al. 2007 Microbe 6(6): 267-273.

Prioritization of Future Roost Surveys

(see roost survey prioritization spreadsheet)

- 1. Caves with previous bat use documented, but no recent survey
- 2. Caves/mines with data loggers deployed
- 3. Mines with previous bat use documented, but no recent survey
- 4. Caves recently surveyed with some sign of bat use, but needing additional survey
- 5. Mines recently surveyed with some sign of bat use, but needing additional survey
- 6. Caves with no previous bat surveys
- 7. Mines with no previous bat surveys
- 8. *Bridges, buildings, rock outcrops and trees that may serve as active season roosts
- 9. Caves and mines previously surveyed with no sign of bat activity
- 10. Caves and mines presenting unacceptable hazards to surveyors or closed to human access. Or other temporary roosts not worth follow up survey.

* While cave and mine surveys may require specific climbing, rope, or other skills, surveys of potential bridge, building, rock outcrop, and tree roosts during the active season can often be easily completed during the course of other job duties without any special skill beyond the ability to identify bat droppings, patiently study cracks and crevices, and take photos of any bats that are observed.

Spatial Prioritization of Cave/Mine Roost Surveys

Warmer colors indicate higher prioritization for survey.

Year-round Statewide Acoustic Monitoring of Bats

Land Ownership of Long-term Bat Acoustic Monitoring Stations

Funders of Long-term Bat Acoustic Monitoring Stations

Semi-automated Analyses of Bat Calls using Sonobat 3.0

Detection Rates - Mistnetting vs. Acoustic Survey

(Lenard et al. 2007)

Smaalar	Overall Percent Detection Rate					
Species	Acoustic n=36ª	Mist-net n=60 ^b				
Little Brown Myotis (Myotis lucifugus)	83.3	15.0				
Western Long-eared Myotis (Myotis evotis)	63.9	33.3				
Fringed Myotis (Myotis thysanodes)	16.7	5.0				
Long-legged Myotis (Myotis volans)	19.4	33.3				
California Myotis (Myotis californicus)	8.3*	8.3				
Western Small-footed Myotis (Myotis ciliolabrum)	36.1	8.3				
Silver-haired Bat (Lasionycteris noctivagans)	33.3	33.3				
Big Brown Bat (Eptesicus fuscus)	36.1	21.7				
Hoary Bat (Lasiurus cinereus)	77.8	21.7				
Spotted Bat (Euderma maculatum)	8.3	0.0				
	X = 38.2	X = 18.4				

Landusky Example

Overview of Data/Analysis

- 71,018 files / call sequences recorded
- 10,064 (14%) calls identified to species by autoanalysis software
- 1,104 (1.5%) hand analyzed

Both Microphones Water Treatment Facility Total Number of Bat Call Sequences Summarized by Date

Both Microphones Water Treatment Facility Total Number of Bat Call Sequences Summarized by Date

Channel 💌							
Count of Classification							
2000	-						
1800	Classification 💌						
1600							
1400	Coto						
1200	Epfu						
1000	Labo						
800	Laci						
600	Lano						
400	Myca						
200	, ■ Myci						
	Mvev						
9/28/ 10/5/ 1/21/ 2/24/ 2/24/ 2/24/ 6/16/ 6/23/ 6/23/ 6/23/ 8/22/ 8/22/ 8/22/ 9/12/ 9/12/ 9/26/							
Night_Lump - Light gray bars are bat call sequences unidentified to species by Sonobat 3.0							

Big Sheep Creek - Tendoy Mountains Example

Sonobat Species ID Counts with Monthly Presence Confirmed by Hand

Species	Jan 2012	Feb 2012	March 2012	April 2012	May 2012	June 2012	July 2012	Aug 2012	Sept 2012	Oct 2012	Nov 2012	Dec 2012
сото					1	4	4	2	5			
EPFU		1	1	4	7	41X	57	31X	49	33		
LACI						х	3X	2X				
LANO			12	10	3	13X	18X	28X	23X	5	4	
МҮСА						2	1	3X	1	1		
МҮСІ				17	26	104X	173X	298X	58	55	1	
MYEV						7X	5X	3X	1	1		
MYLU				1	19	49X	108X	81X	13	6	1	
МҮТН						х		х				
ΜΥνο						4X	7	10X	3			
ΜΥΥU				1	2	4	7	6	8	6		

X = previous documentation of the species in this region during the month indicated. Red = Erroneous species identification by Sonobat 3.0

Bat Pass Species Temperatures Summarized by Month

-								Year	Month		Avgerage	StDev	Min Temp_C	Max Temp_C	N
Year	Month	Auto Species ID	Avgerage Temp_C	StDev Temp_C	Min Temp_C	Max Temp_C	N	2012	4	Myci	7.2	1.1	6.4	8	2
2012	5	Coto	18.3		18.3	18.3	1	2012	5	Myci	14.7	4.4	6.5	20.1	20
2012	6	Coto	20.4	2.1	17.6	22.6	4	2012	6	Myci	17.1	3.6	6.2	23.2	104
2012	7	Coto	18.7	5.0	11.3	22.1	4	2012	7	Myci	18.4	3.3	7.5	24.4	173
2012	8	Coto	14.7	1.2	13.8	15.5	2	2012	8	Myci	14.2	3.6	7.4	25.9	298
2012	9	Coto	18.6	1.7	16.8	20.4	5	2012	9	Myci	16.6	2.2	12.3	20.4	58
2012	2	Epfu	0.6		0.6	0.6	1	2012	10	Myci	12.1	3.1	4.7	17.4	55
2012	3	Epfu	11.7		11.7	11.7	1	2012	11	Myci	6.4		6.4	6.4	1
2012	4	Epfu	6.3	3.0	3.6	9.5	3	2012	4	Mylu					0
2012	5	Epfu	15.3	3.0	12	20.1	6	2012	5	Mylu	13.4	3.7	3.9	17.6	17
2012	6	Epfu	15.3	3.7	8.4	21.7	41	2012	6	Mylu	16.2	4.9	6.7	23.4	49
2012	7	Epfu	18.2	2.8	8.7	23.6	57	2012	7	Mylu	17.5	3.4	8	23.9	108
2012	8	Epfu	17.7	2.5	11.7	21.4	31	2012	8	Mylu	17.7	3.7	7.7	26	81
2012	9	Epfu	17.3	1.5	15.5	21.9	49	2012	9	Mylu	14.1	4.5	4.2	19.8	13
2012	10	Epfu	16.1	1.2	13.3	17.4	33	2012	10	Mylu	12.9	2.8	9.7	16.1	6
2012	7	Laci	17.8	0.9	16.8	18.4	3	2012	11	Mylu	9.7		9.7	9.7	1
2012	8	Laci	21.3	5.9	17.1	25.4	2	2012	6	Myvo	17.7	6.0	9.2	22.7	4
2012	3	Lano	8.1	1.4	5.7	9.8	12	2012	7	Муvo	18.5	2.3	14.8	21.9	7
2012	4	Lano	6.3	2.0	5.5	11.7	9	2012	8	Муvo	19.3	3.2	14.3	22.7	10
2012	5	Lano	12.5	3.5	10	15	2	2012	9	Муvo	14.3	4.1	9.7	17.6	3
2012	6	Lano	16.0	4.4	8.9	23.4	13	2012	4	Мууи					0
2012	. 7	Lano	16.8	3.4	8	21.4	18	2012	5	Мууи	15.9	2.9	13.8	17.9	2
2012	8	Lano	17.3	4.2	9.8	23.6	28	2012	6	Мууи	12.7	3.1	9.4	16.8	4
2012	9	Lano	17.0	2.8	10.3	21.9	23	2012	7	Мууи	18.3	3.4	14.8	24.9	7
2012	10	Lano	10.1	3.9	4.4	15.1	5	2012	8	Мууи	14.6	1.5	12.3	16.8	6
2012	11	Lano	8.2	2.6	4.7	11	4	2012	9	Мууи	17.2	1.3	15.1	18.6	8
2012	6	Myca	18.7	2.7	16.8	20.6	2	2012	10	Мууи	14.4	2.2	11	17.4	6
2012		Myca	21.9	0.7	21.9	21.9		2012	2	Unidentified	5.9		5.9	5.9	1
2012	8	Myca	16.9	2.7	14.6	19.8	3	2012	3	Unidentified	8.2	3.9	0.4	12	21
2012	9	Myca	10.0		10.0	10.0	1	2012	4	Unidentified	3.7	3.4	-0.1	11	27
2012	6	Myey	14.6	54	8.9	22.7	7	2012	5	Unidentified	14.8	4.1	2.4	20.3	423
2012	7	Myev	16.4	4.8	8	19.8	5	2012	6	Unidentified	16.5	4.4	2.7	23.7	1143
2012	8	Myev	16.0	1.3	15	17.4	3	2012	7	Unidentified	17.7	3.3	3.1	24.7	1365
2012	9	Myev	11.0		11	11	1	2012	8	Unidentified	17.7	3.5	6.7	26.5	1572
2012	10	Myev	10.3		10.3	10.3	1	2012	9	Unidentified	16.5	2.1	7	21.9	1685
								2012	10	Unidentified	14.2	3.2	2.6	17.4	738
									11	Unidentified	8.2	3.3	0.4	11.3	9

Summary and Future Directions

- Some of our winter roost environments appear capable of supporting WNS – decontamination is essential
- Caves and mines that lack recent surveys should be surveyed as rapidly as possible, especially if there is evidence of bat use
- Cavers and caving groups are critical to baseline assessment and monitoring of our caves and mines!!!
- Need to develop a White-Nose Syndrome risk scoring system
- Year-round acoustic monitoring assessments should continue for a minimum of 2-3 years statewide.
- What wildlife biologists can do:
 - 1. Bridge surveys and report other bat roosts
 - 2. Work with local groups to install bat roosts
 - 3. Introduce kids (and yourself) to our amazing bats!